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1.1. Rates of Change

1.1.1. Performance Criteria

(a) Determine the average rates of change of a function algebraically
from its expression.

(b) Determine the average rate of change of a function from its
graph.

(c) Calculate average velocity from a set of data points over an
interval.

(d) Calculate an estimate for the instantaneous velocity at a point
from a set of data points.

(e) Approximate the instantaneous rate of change(or slope of the
graph, or derivative) of a function at a point, from its graph.

1.1.2. Average rate of change

Example 1.1. Suppose that while climbing Mt. Shasta you note the
temperature at the bottom and at the top of the mountain. Mt. Shasta
is roughly 14,000 feet above sea level. At the base of the mountain
(5,000 feet above sea level) the temperature is 45◦F, while at the sum-
mit, the temperature is −15◦F. What is the average rate of change
of temperature while climbing?

Solution. It’s easy to see that the temperature is a function of the
height (the higher you go, the colder it gets). So, we first want to find
out the change in temperature between the two points (base(tb) and
summit(ts)). The change is

ts − tb = −15◦F− 45◦F = −60◦F.

1
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However, you are asked to find the average rate of change of temper-
ature while you are climbing. The temperature changes due to change
in height which is

hs − hb = 14, 000 ft.− 5, 000 ft. = 9, 000 ft.

Therefore, the average rate of change of temperature is the change in
temperature with respect to the height i.e.

average rate of change =
ts − tb
hs − hb

=
−60◦F

9, 000 ft.
= −0.0067◦F/foot

�
In the previous example the temperature(t) was a function of the

height(h). Therefore, t was the dependent variable and h was the
independent variable. In general,

Average rate of change =
Change in the dependent variable

Change in the independent variable

1.1.3. Average rate of change of a function

Consider a function y = f(x). Recall that x is the independent variable
and y is the dependent variable. Also consider two points x1 and x2 in
the domain of f with x2 > x1. Let y1 = f(x1) and y2 = f(x2).

Then going by the previous definition of the average rate of change
we have,

Definition 1.2. For a function f(x) with points x1, x2 (x2 > x1) in
the domain of f , the average rate of change of f with respect
to x over the interval [x1, x2] is

∆f

∆x
=

f(x2)− f(x1)

x2 − x1

Here ∆f and ∆x denote the change in f and x respectively.

Example 1.3. Consider the function f(x) = −2x2 + 4x− 1. Find the
average rate of change of f with respect to x from x = 0 to x = 1.

Solution. Here x1 = 0 and x2 = 1. Therefore,

∆f

∆x
=

f(1)− f(0)

1− 0
=

1− (−1)

1
= 2

�
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1.1.4. Average velocity

Consider a distance function s(t) which denotes the distance of a parti-
cle from the starting point at time t. Between the time interval [t1, t2],
the average rate of change of the function s(t) with respect to t is
defined to be the average velocity of the particle, i.e.

Definition 1.4. The average velocity of a particle moving ac-
cording to the distance function s(t) between the time interval
[t1, t2] is

∆s

∆t
=

s(t2)− s(t1)

t2 − t1

Example 1.5. A ball dropped from a state of rest at time t = 0 travels
a distance s(t) = 4.9t2 m in t seconds. Compute the average velocity
over the time interval [3, 3.5].

Solution. Here t1 = 3 and t2 = 3.5. The average velocity between
these two points is therefore,

∆s

∆t
=

s(3.5)− s(3)

3.5− 3
=

60.025− 44.1

0.5
= 31.85 m/s.

�

1.1.5. Secant Lines

Let’s draw the graph of the function in Example 1.3.
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If we plot the two points (0,−1) and (1, 1) on the graph and join them
by a straight line, we end up having



4 DIBYAJYOTI DEB, HANDOUT 1

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

This red line joining these two points on the graph of the function
is called a secant line, and the slope of the secant line is the average
rate of change of the function between those two points. (Recall how
you found the slope of a line joining two points)

Hence, slope of the secant line is 2.

1.1.6. Instantaneous rate of change

Instantaneous rate of change is similar to the average rate of change
that we looked at earlier but over “very small” intervals.

This is a very vague way to describe instantaneous rate of change,
therefore, let’s look at the earlier Example 1.3

Example 1.6. Consider the function f(x) = −2x2 + 4x− 1. Find the
instantaneous rate of change of f at x = 0.

Solution. Here we have just one point. As we mentioned in our
“vague” definition, let’s consider the small interval [0, 0.1], and let’s
compute the average rate of change over this interval.

∆f

∆x

∣∣∣∣∣
[0,0.1]

=
−0.62− (−1)

0.1− 0
=

0.38

0.1
= 3.8

Now let’s look at an even smaller interval [0, 0.01]. The average
rate of change over this interval is,

∆f

∆x

∣∣∣∣∣
[0,0.01]

=
−0.9602− (−1)

0.01− 0
=

0.0398

0.01
= 3.98

We can keep on doing this for few more intervals each smaller than
the previous. We construct a table involving these intervals.



1.1. Rates of Change 5

Interval
∆f

∆x
[0, 0.1] 3.8
[0, 0.01] 3.98
[0, 0.001] 3.998
[0, 0.0001] 3.9998
[0, 0.00001] 3.99998

The above table clearly shows that, as the intervals get smaller and

smaller, the difference quotient
∆f

∆x
gets closer to 4. This suggests

that 4 is a good candidate for the instantaneous rate of change of the
function f at x = 0.

�
We can now define the instantaneous rate of change in a slightly

better way

Definition 1.7. The instantaneous rate of change is the limit (a
concept we will be learning soon) of the average rate of change as the
length of the intervals shrink to zero.

Similarly the instantaneous velocity is the limit of the average
velocity as the length of the time intervals shrink to zero. The instan-
taneous velocity also describes the velocity of a particle at that instant
of time.

1.1.7. Tangent Lines

If we go back to the graph of our function from Example 1.3, and keep
drawing secant lines for every small interval, we end up having
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If we look closely at the graph, then we can see that the red secant
line “approaches” the blue tangent line at the point x = 0. This
happens as the length of the interval between the two points (where
the left end point is fixed at 0 and the right end point approaches 0)
gets smaller and smaller.

This can be verified by looking at the black and green secant lines
which are closer to the blue tangent line than the original red secant
line.

So what about the slope of this tangent line at x = 0? If we recall,
we previously concluded that the slope of the secant line joining two
points is precisely the average rate of change of the function between
those two points. We also defined the instantaneous rate of change to
be limit of the average rate of change over very small intervals, which
we computed in the second column of the table above. Thus,

Remark. The slope of the tangent line of a function f(x) at x = a is
the instantaneous rate of change of the function at x = a.

1.2. Limits

1.2.1. Performance Criteria

(a) Use the graph of a function to determine left and right hand
limits at a point.

(b) Use left and right hand limits obtained from the graph of a
function to determine a limit at a point.

(c) Use limit notation correctly.
(d) Calculate left and right hand limits.
(e) Calculate limits at a point.
(f) Calculate limits at infinity.

1.2.2. Definition of a Limit

In the previous section, it was mentioned that the instantaneous rate
of change is the limit of the average rate of change. We formally define
the concept of limit in this section.

Consider the function f(x) =
ex − 1

x
. Notice that f(0) is not de-

fined. When we set x = 0 we have the undefined expression 0/0.
However, let’s try to find out what happens when x approaches 0.

1.2.2.1. Left hand limit. We first choose values of x which are close
to 0 but less than 0. In this case, we say we are approaching 0 from
the left. Let’s see the values of the function values corresponding to
these values of x.
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x
ex − 1

x
-0.1 0.951625
-0.01 0.995016
-0.001 0.9995
-0.0001 0.99995
-0.00001 0.999995

It is clear from the above table that as x gets closer and closer to 0

from the left, the value of
ex − 1

x
gets closer to 1. We say that the left

hand limit of the function f is 1. We write it as,

lim
x→0−

ex − 1

x
= 1

Here lim is an abbreviation for limit and x→ 0− means x approaches
0 from the left.

1.2.2.2. Right hand limit. Now let’s choose values of x which are
close to 0 but greater than 0. In this case, we say we are approaching 0
from the right. Let’s see the function values corresponding to these
values of x.

x
ex − 1

x
0.1 1.051709
0.01 1.00501
0.001 1.0005
0.0001 1.00005
0.00001 1.000005

Again, it is clear from the above table that as x gets closer and closer

to 0 from the right, the value of
ex − 1

x
gets closer to 1. We say that

the right hand limit of the function f is 1. We write it as,

lim
x→0+

ex − 1

x
= 1

Here x→ 0+ means x approaches 0 from the right.

Since both left hand limit and right hand limit of the above function
give the same finite value (which is 1), we say that limit of the function
exists and is equal to that finite value. We write it as,

lim
x→0

ex − 1

x
= 1
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Note that we don’t use + or − with 0 anymore since we are denoting
the limit of the function.

Additionally, if we look at the graph of the function f(x) =
ex − 1

x
,

we see that as we approach 0 from either side the graph approaches 1
(without being defined at x = 0).
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Let’s formally define limit for an arbitrary function f(x).

Definition 1.8. Assume that f(x) is defined for all x in an open in-
terval containing a, but not necessarily at a itself. We say that

the limit of f(x) as x approaches a is equal to L

if | f(x) − L | becomes arbitrarily small when x is any number suffi-
ciently close (bit not equal) to a. In this case, we write

lim
x→a

f(x) = L

If the values of f(x) do not converge to any limit as x → a, we say
that lim

x→a
f(x) does not exist.

Remark. For a limit lim
x→a

f(x) = L to exist, it is necessary that both

the left hand limit lim
x→a−

f(x) and right hand limit lim
x→a+

f(x) exist and

is equal to L.

Example 1.9. Consider the function f(x) =
x

| x |
. Does lim

x→0
f(x) exist?

Solution. By the definition of the absolute value, for x < 0, | x |= −x.
Therefore,

lim
x→0−

x

| x |
= lim

x→0−

x

−x
= lim

x→0−
−1 = −1.

Recall, that x→ 0− means we are approaching 0 from the left i.e. with
numbers less that 0, hence the reason for | x |= −x.



1.2. Limits 9

On the other hand, for x > 0, | x |= x. Therefore,

lim
x→0+

x

| x |
= lim

x→0+

x

x
= lim

x→0+
1 = 1.

Since,

lim
x→0−

x

| x |
6= lim

x→0+

x

| x |
therefore, limx→0

x

| x |
doesn’t exist.

Additionally, looking at the graph of f(x) =
x

| x |
below verifies the

same result.
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�

1.2.3. Infinite Limits

Sometimes functions f(x) tend to ∞ or −∞ as x approaches a value
a. In this case, we say that lim

x→a
f(x) does not exist. More precisely,

• lim
x→a

f(x) =∞, if f(x) increases without bound as x→ a.

• lim
x→a

f(x) = −∞, if f(x) decreases without bound as x→ a.

Even though the limit does not exist, we still say that f(x) has an
infinite limit.

When f(x) approaches ∞ or −∞ from one or both sides, the line
x = a (which is vertical) is called a vertical asymptote

Example 1.10. Investigate the one-sided limit graphically,

lim
x→3+

1

x− 3

Solution. Let us draw the graph of f(x) =
1

x− 3
.
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As we move closer to 3 from the right we see that the graph shoots up
to ∞. Therefore,

lim
x→3+

1

x− 3
=∞

The line x = 3 is a vertical asymptote.

�

Additional Problem. Can you find the other one-sided limit?

lim
x→3−

1

x− 3

1.2.4. Limit Laws

There are some basic limit laws that you would like to follow when
evaluating limits.

If lim
x→a

f(x) and lim
x→a

g(x) exist, then

• Sum Law: lim
x→a

(f(x) + g(x)) exists and

lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→

g(x)

• Product Law: lim
x→a

f(x)g(x) exists and

lim
x→a

f(x)g(x) = (lim
x→a

f(x))(lim
x→a

g(x))
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• Quotient Law: If lim
x→a

g(x) 6= 0, then lim
x→a

f(x)

g(x)
exists and

lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)

• Powers and Roots: If p, q are integers with q 6= 0, then
lim
x→a

[f(x)]p/q exists and

lim
x→a

[f(x)]p/q = (lim
x→a

f(x))p/q

Example 1.11. Evaluate

lim
x→2

x2 + 3x− 9

x− 4

Solution. Let’s use the limit laws here,

lim
x→2

x2 + 3x− 9

x− 4
=

lim
x→2

(x2 + 3x− 9)

lim
x→2

(x− 4)
=

4 + 6− 9

2− 4
= −1

2

�
Usually the first thing to do when you are doing a problem in limit

is to substitute the value of x into the expression and see what the
result is. If you end up getting a finite value, then stop right there and
that is the limit. However, if you have an undefined case like 0/0, then
you have to explore other methods.
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3.1. Trigonometric Limits

3.1.1. Performance Criteria

(a) Determine limits using the Squeeze Theorem.
(b) Calculate limits involving trigonometric functions.

3.1.2. The Squeeze Theorem

Let us say that we have a function f(x) that is “squeezed” between
two functions g(x) and h(x) on an interval I, i.e.,

g(x) ≤ f(x) ≤ h(x) for all x ∈ I and

lim
x→a

g(x) = lim
x→a

h(x) = L

y

x
a

f(x)

g(x)

h(x)

L

It is easy to see from the graph above that the function f(x) is “squeezed”
between h(x) and g(x). If this happens then we have the Squeeze The-
orem,

1
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Theorem 3.1. Assume that for x 6= a (in some open interval con-
taining a),

g(x) ≤ f(x) ≤ h(x) and lim
x→a

g(x) = lim
x→a

h(x) = L

Then lim
x→a

f(x) exists and lim
x→a

f(x) = L.

It should be somewhat clear from the previous diagram as to why
this theorem is true (The diagram doesn’t give us a formal proof
though).

Example 3.2. Evaluate using the Squeeze Theorem.

lim
x→0

x sin
1

x2

Solution. The goal here is to find two functions g(x) and h(x) such
that

g(x) ≤ x sin
1

x2
≤ h(x) and lim

x→0
g(x) = lim

x→0
h(x) = L

We know that −1 ≤ sin
1

x2
≤ 1 for all x 6= 0. Therefore, | sin 1

x2
| ≤ 1

for all x 6= 0. If we multiply by |x|, we have |x sin
1

x2
| ≤ |x| and

therefore,

−|x| ≤ x sin
1

x2
≤ |x|

Now lim
x→0
|x| = 0 and lim

x→0
(−|x|) = 0, therefore we can apply Squeeze

Theorem to conclude that lim
x→0

x sin
1

x2
= 0.

�

3.1.3. Important Trigonometric Limits

There are two important trigonometric limits that we will be using
throughout this section and beyond. They are,

lim
x→0

sinx

x
= 1, lim

x→0

1− cosx

x
= 0
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The proof of the above results use the Squeeze Theorem and the
fact that

cosx ≤ sinx

x
≤ 1 for − π

2
< x <

π

2
, x 6= 0

Example 3.3. Evaluate the limit

lim
x→0

x2

sin2 x

Solution. Initial substitution with x = 0 in the expression yields the
indeterminate form 0/0. Hence we have to simplify the expression. The
goal here is to use one of the two trigonometric limits that we discussed
earlier. Note that both x and sinx is present in the expression.

lim
x→0

x2

sin2 x
= lim

x→0

1

sin2 x

x2

= lim
x→0

1(sinx

x

)2
=

lim
x→0

1

lim
x→0

(sinx

x

)2
=

1

12
= 1.

�

Example 3.4. Evaluate the limit

lim
x→0

1− cosx

sinx

Solution. Initial substitution with x = 0 in the expression yields the
indeterminate form 0/0. Hence we have to simplify the expression.
The goal here is to use one of the two trigonometric limits that we
discussed earlier. Note that both 1− cosx and sinx are present in the
expression. Therefore we somehow want to get x in the denominator
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of each of these terms.

lim
x→0

1− cosx

sinx
= lim

x→0

1− cosx

x
sinx

x

(Dividing both the numerator and denominator by x)

=
lim
x→0

1− cosx

x

lim
x→0

sinx

x

=
0

1
= 0.

�

Example 3.5. Evaluate the limit

lim
x→0

tan 4x

9x

Solution. Initial substitution with x = 0 in the expression yields the
indeterminate form 0/0. Hence we have to simplify the expression. Let
us try to get everything in terms of sin x and cos x.

tan 4x

9x
=

sin 4x

cos 4x
9x

=
sin 4x

9x cos 4x

Now we know that lim
x→0

sinx

x
= 0. Since x → 0, therefore, 4x → 0 as

4x is just a multiple of x. Therefore, if 4x = h, then we can say that

lim
h→0

sinh

h
= 1 where h = 4x.

We can now rewrite our initial problem as

lim
x→0

tan 4x

9x
= lim

x→0

sin 4x

9x cos 4x

= lim
x→0

(sin 4x

4x

)( 4x

9x cosx

)
= lim

h→0

(sinh

h

)
lim
x→0

( 4x

9x cosx

)
= 1 · lim

x→0

( 4

9 cosx

)
= 1 · 4

9 · 1
=

4

9

�
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3.2. Limits at Infinity

3.2.1. Performance Criteria

(a) Calculate limits at infinity.
(b) Calculate horizontal asymptotes.

3.2.2. Limits at infinity

We have solved quite a few problems involving limits in the previous
sections. In all these problems we considered limits where x approached
a finite number a. Now, we consider limits where x approaches either
∞ or −∞. Before we delve into a theorem involving limits at infinity,
we look at some basic results involving simple functions.

Theorem 3.6. For all n > 0,

lim
x→∞

xn =∞, lim
x→±∞

x−n = lim
x→±∞

1

xn
= 0

If n is a whole number then,

lim
x→−∞

xn =

{
∞, if n is even

−∞, if n is odd

The best way to verify these results is by substituting a very large
positive number for x when x approaches ∞ and substituting a nega-
tive number with a large absolute value when x approaches −∞ and
checking the answer.

Example 3.7. Find

lim
x→−∞

2

x3

Solution. lim
x→−∞

2

x3
= 2 lim

x→−∞

1

x3
= 2 · 0 = 0. (By Theorem 3.6) In-

tuitively you can think of x as −109 (a negative number with a very
large absolute value). So, 1/x3 = −1/1027 which is a very very small
number hence very close to 0.

�
We will be mostly concerned with limits of rational functions. Ra-

tional functions are fractions in which both the numerator and de-
nominator are polynomials in x. In this regard we have the following
theorem.
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Theorem 3.8. The limit of a rational function as x approaches
either ∞ or −∞ depends only on the leading term of its numerator
and denominator, i.e, if an, bm 6= 0, then

lim
x→±∞

anx
n + an−1x

n−1 + · · ·+ a0
bmxm + bm−1xm−1 + · · ·+ b0

=
an
bm

lim
x→±∞

xn−m = L

where L =



0, if n < m

an
bm
, if n = m

∞ or −∞, if n > m

Let us look at some applications of the above theorem,

Example 3.9. Evaluate the limit

lim
x→∞

3x9/2 − 4x3 + 2x2 − 9

4x2 − 3x+ 7

Solution. Here the leading term of numerator is 3x9/2 and that of the
denominator is 4x2. Since 9/2 > 4, therefore the limit is either ∞ or
−∞. Again, by Theorem 3.8, we have

lim
x→∞

3x9/2 − 4x3 + 2x2 − 9

4x2 − 3x+ 7
=

3

4
lim
x→∞

x9/2−2 =
3

4
lim
x→∞

x5/2 =∞.

�

Example 3.10. Evaluate the limit

lim
x→∞

√
9x4 + 3x2 + 2

4x3 − 1

Solution. Here we can think of the leading term of the numerator as√
9x4 = 3x2 and the leading term of the denominator is 4x3. Since

2 < 3, therefore

lim
x→∞

√
9x4 + 3x2 + 2

4x3 − 1
=

3

4
lim
x→∞

x−1 =
3

4
· 0 = 0.

�
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3.2.3. Horizontal asymptote

Horizontal asymptotes are horizontal straight lines that are parallel to
the x-axis which are never touched by any graph except at ∞ or −∞,
i.e, the graph gets closer and closer to the horizontal asymptote as x
approaches ∞ or −∞. So, how do we find the horizontal asymptotes?

Definition 3.11. A horizontal line y = L is a horizontal asymptote
if

lim
x→∞

f(x) = L and/or lim
x→−∞

f(x) = L

Example 3.12. Find the horizontal asymptote(s).

f(x) =
2x3

x3 + 1

Solution. By Theorem 3.8 we have,

lim
x→±∞

2x3

x3 + 1
= 2 lim

x→±∞

x3

x3
= 2 · 1 = 2.

Therefore, y = 2 is a horizontal asymptote of the function f(x) =
2x3

x3 + 1
. The graph of the function looks like,
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As can be seen from the graph above that the line y = 2 is a horizontal
asymptote.

�
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2.1. Limits and Continuity

2.1.1. Performance Criteria

(a) Determine and classify points of discontinuity from the graph
of a function.

(b) Calculate points of discontinuity.
(c) Prove one-sided continuity.
(d) Show continuity at a point.

2.1.2. Continuity

A function f(x) is said to be continuous everywhere, if the graph of
the function does not have a “break” in it. What do I mean by not
having a “break”? Look at the graph below
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1
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The graph has a break at the point −1. We say that the graph has
a discontinuity at x = −1.

1
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Discontinuity at a point on a graph occurs because the left hand
and right hand limit of f(x) as x approaches a are not equal and
hence lim

x→−1
f(x) does not exist. In the above example, lim

x→−1−
f(x) = 1

whereas lim
x→−1+

f(x) = 2, hence the limit lim
x→−1

f(x) does not exist. On

the other hand,

Definition 2.1. Assume that f(x) is defined on an open interval con-
taining the point a. Then f is continuous at x = a if

lim
x→a

f(x) = f(a)

If the limit does not exist, or if it exists but is not equal to f(a), we
say that f has a discontinuity(or is discontinuous) at x = a.

Therefore, to check continuity of a function at a point x = a, we
need to check three conditions.

• f(a) is defined.
• lim

x→a
f(x) exists.

• They are equal to each other i.e. lim
x→a

f(x) = f(a).

2.1.3. Types of discontinuities

In general, there are usually three types of discontinuity that can be
associated with a function.

• Removable discontinuity - This happens when the limit of
the function at a point a is not equal to f(a), i.e.

lim
x→a

f(x) 6= f(a)

Example of a graph of such a function would be
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As is clear from the above graph, the function is not con-
tinuous at x = 2. This is because even though lim

x→2
f(x) = 2, it

is not equal to f(2) which is 1.
The reason this type of discontinuity is called “removable”

is because the discontinuity can be removed by defining the
value of the function at that point to be equal to the value of
the limit. Therefore in the above graph, we can define f(2) = 2
and then it would equal lim

x→2
which would remove the disconti-

nuity at x = 2.
• Jump discontinuity - This happens when the one-sided lim-

its exist but are not equal to each other, i.e.

lim
x→a−

f(x) 6= lim
x→a+

f(x)

Example of a graph of such a function would be
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It’s clear from the above graph that lim
x→2−

f(x) = 2 but

lim
x→2+

f(x) = 3, hence lim
x→2

f(x) does not exist. Therefore f(x)

cannot be continuous at x = 2. Discontinuities of this type
cannot be removed unlike the previous case.
• Infinite discontinuity - This happens when one or both of

the one sided limits is infinite at x = a.
Example of a graph of such a function would be
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It’s clear from the above graph that lim
x→3−

f(x) = −∞ and

lim
x→3+

f(x) = ∞, hence f(x) is not continuous at x = 3. Note

that f(x) is not even defined at x = 3.

2.1.4. One-sided continuity

Just like one-sided limits, we have one-sided continuity. A function
f(x) is called

• Left Continuous at x = a if lim
x→a−

f(x) = f(a)

• Right Continuous at x = a if lim
x→a+

f(x) = f(a)

Example 2.2. Discuss the continuity of

f(x) =

 x x < 2
2 2 ≤ x ≤ 5
x2 − 1 x > 5

Solution. The candidates for points of discontinuity are 2 and 5. For
x = 2,

lim
x→2−

f(x) = lim
x→2−

x = 2,

lim
x→2+

f(x) = lim
x→2+

2 = 2 and

f(2) = 2.

Therefore, f(x) is continuous at x = 2. For x = 5,

lim
x→5−

f(x) = lim
x→5−

2 = 2,
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lim
x→5+

f(x) = lim
x→5+

x2 − 1 = 24 and

f(5) = 2.

Thus lim
x→5−

f(x) 6= lim
x→5+

f(x), however, lim
x→5−

f(x) = f(5). Thus f(x) is

left-continuous at x = 5.

�

2.1.5. Standard continuous functions

2.1.5.1. Basic laws of Continuity. If f(x) and g(x) are continuous
at x = a, then the following functions are also continuous at x = a.

(a) f(x) + g(x) and f(x)− g(x).
(b) f(x)g(x).
(c) kf(x) for any constant k.
(d) f(x)/g(x) if g(a) 6= 0.

2.1.5.2. Continuity of some basic functions.

• y = sinx and y = cosx are continuous for every real number.
• y = P (x), a polynomial is continuous for all real numbers.
• For polynomials P (x) and Q(x), the quotient P (x)/Q(x) is

continuous on its domain (at all values of x = a such that
Q(a) 6= 0).

Example 2.3. Discuss the continuity of the function

f(x) =
x− 1

x2 − 4

Solution. As x − 1 and x2 − 4 are both polynomials therefore, the
function f(x) is not continuous at points where the denominator is
zero. Those points are x = ±2.

�

2.1.5.3. Continuity of the Inverse Function. If f(x) is continuous
on an interval I with range R, and if f−1(x) exists, then f−1(x) is
continuous with domain R.

Example 2.4. Discuss the continuity of the function f(x) = sin−1 x.

Solution. Since y = sinx is continuous on the real line with range
[−1, 1], therefore y = sin−1 x is continuous on the interval [−1, 1].

�
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2.1.5.4. Continuity of Composite Functions. If g is continuous at
x = a, and f is continuous x = g(a), then the composite function
f(x) = f(g(x)) is continuous at x = a.

Example 2.5. Discuss the continuity of the function F (x) = sin
( 1

x− 1

)
.

Solution. The function f(x) = sinx is continuous for all real numbers

and the function g(x) =
1

x− 1
is continuous for all real numbers except

1. Since F (x) = f(g(x)), therefore F (x) is continuous for all real
numbers except 1.

�

2.2. Evaluating Limits Algebraically

2.2.1. Performance Criteria

(a) Calculate limits at a point.
(b) Evaluate limits of indeterminate forms.
(c) Calculate left and right hand limits.

2.2.1.1. Evaluating limits by substitution. We can use substitu-
tion to evaluate limits of functions that are continuous at the point of
substitution, i.e. lim

x→a
f(x) = L, if f(a) = L where L is a finite number.

Note that if f(a) is undefined then the limit could still exist, it just
means that we have to use other methods or use simplification in order
to evaluate the corresponding limit.

Example 2.6. Evaluate the limit.

lim
x→−2

x2 − 9

x + 3

Solution. Let f(x) =
x2 − 9

x + 3
. Substituting x = −2 in this function

gives f(−2) =
(−2)2 − 9

−2 + 3
= −5 which is a finite number. Hence,

lim
x→−2

x2 − 9

x + 3
= −5

�
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2.2.1.2. Evaluating indeterminate limits. Most of the time the
above substitution method does not work with limits. This is because
when we substitute x = a, the function f(x) takes one of the following
forms

0

0
,
∞
∞

, ∞ · 0, ∞−∞

In this situation we usually simplify the function f(x) and, in the pro-
cess get rid of the term that makes the function undefined.

Example 2.7. Evaluate

lim
x→5

x2 − 25

x− 5

Solution. Let f(x) =
x2 − 25

x− 5
. Substitution gives f(5) =

0

0
. Hence,

let’s try to simplify the function,

lim
x→5

x2 − 25

x− 5
= lim

x→5

(x− 5)(x + 5)

x− 5
= lim

x→5
(x + 5) (We can divide by x− 5 as x 6= 5 but x→ 5)

= 5 + 5 = 10. (Now we can use substitution again)

�

Example 2.8. Evaluate

lim
x→−2

x3 + 8

x2 + 6x + 8

Solution. Let f(x) =
x3 + 8

x2 + 6x + 8
. Substitution gives f(−2) =

0

0
.

Let’s try to simplify the function,

lim
x→−2

x3 + 8

x2 + 6x + 8
= lim

x→−2

(x + 2)(x2 − 2x + 4)

(x + 2)(x + 4)
(Recall, a3 ± b3 = (a± b)(a2 ∓ ab + b2))

= lim
x→−2

x2 − 2x + 4

x + 4
(We can divide by x + 2 as x 6= −2 but x→ −2)

=
(−2)2 − 2(−2) + 4

−2 + 4
= 6. (Now we can use substitution again)

�

Example 2.9. Evaluate

lim
x→0

cotx

cscx
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Solution. Let f(x) =
cotx

cscx
. Substitution gives f(0) =

∞
∞

. Therefore,

let’s try to simplify the function.

lim
x→0

cotx

cscx
= lim

x→0

cosx

sinx
1

sinx
= lim

x→0
cosx (We can divide by sinx as sin x 6= 0 since x 6= 0 but x→ 0)

= cos 0 = 1. (Now we can use substitution again)

�

Example 2.10. Evaluate

lim
x→1

( 1

1− x
− 2

1− x2

)

Solution. Let f(x) =
( 1

1− x
− 2

1− x2

)
. Substitution gives f(1) =

∞−∞. Hence, let’s try to simplify the function,

lim
x→1

( 1

1− x
− 2

1− x2

)
= lim

x→1

(1 + x− 2

1− x2

)
= lim

x→1

( x− 1

1− x2

)
= lim

x→1

x− 1

(1− x)(1 + x)
(We can divide by x− 1 as x 6= 1 but x→ 1)

= lim
x→1

−1

1 + x
(Now we can use substitution again)

= −1

2

�

Example 2.11. Evaluate

lim
x→8

√
x− 4− 2

x− 8
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Solution. Let f(x) =

√
x− 4− 2

x− 8
. Substitution gives f(8) =

0

0
.

Therefore, let’s simplify the function. We first multiply the numer-
ator and the denominator with the conjugate of the numerator.

lim
x→8

√
x− 4− 2

x− 8
= lim

x→8

(
√
x− 4− 2)(

√
x− 4 + 2)

(x− 8)(
√
x− 4 + 2)

= lim
x→8

x− 4− 4

(x− 8)(
√
x− 4 + 2)

= lim
x→8

x− 8

(x− 8)(
√
x− 4 + 2)

= lim
x→8

1√
x− 4 + 2

(We can divide by x− 8 as x 6= 8 but x→ 8)

=
1√

8− 4 + 2
=

1

4
(We use substitution here)

�

Example 2.12. Evaluate

lim
x→1

x2 − 2x + 3

x− 1

Solution. Let f(x) =
x2 − 2x + 3

x− 1
. Substitution gives f(1) =

2

0
. This

is not an indeterminate form, so simplification won’t help. Let’s try to
graph the function,

−6−4−2 2 4 6

−12

−6

6

12

x

y
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From the above graph, we see that the one-sided limits are infinite.

lim
x→1−

x2 − 2x + 3

x− 1
= −∞, lim

x→1+

x2 − 2x + 3

x− 1
=∞

Therefore the limit does not exist.

�
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MATH 251

Dibyajyoti Deb

4.1. Definition of the Derivative

4.1.1. Performance Criteria

(a) Derive a formula for the definition of the derivative.
(b) Use the definition of the derivative to calculate the derivative

of a polynomial.
(c) Use the definition of the derivative to calculate the equation of

the line tangent to a polynomial at a point.
(d) Use derivative notations correctly.

4.1.2. The Derivative

Differential calculus can be broadly classified into 3 main topics. They
are

(a) The study of limits and continuity.
(b) The study of the derivative.
(c) Applications of the derivative.

We have already covered the first topic of limits and continuity in our
previous 3 handouts. In this handout and beyond we will be looking
at the second and the most important topic of the derivative.

Let’s go back to the topic of average rate of change that we covered
earlier. I said that the average rate of change of a function f(x) on the
interval [a, b] is given by the expression

∆f

∆x
=

f(x)− f(a)

x− a

So what exactly did we find out when we computed this difference
quotient?

1
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y

x

∆f = f(x)− f(a)

∆x = x− a

a x

Q = (x, f(x))

P = (a, f(a))

If we look at the graph above, we can see that the difference quotient is
nothing but the slope of the secant line PQ. Now imagine what would
happen if we keep the point P fixed, but keep on moving the point Q
towards P .

y

x
a x

Q

P

The blue secant lines would eventually become the tangent line at
the point P . In the process, the point x on the x-axis gets closer to
a. Thus, we would expect the slope of the secant lines to approach the
slope of the tangent line. This leads us to the definition of this new
term called the derivative.
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Definition 4.1. The derivative of f(x) at x = a is the limit of
the difference quotient (if it exists)

(4.2) f ′(a) = lim
x→a

f(x)− f(a)

x− a

When the limit exist, we say that f is differentiable at x = a.

Note that the derivative of f(x) at x = a is denoted by f ′(a), which
is read as “f prime of a”. We take the limit of the difference quotient
in the definition of the derivative because as point Q approaches P ,
the point x approaches a which is signified by the limit.

Since the difference quotient is the slope of the secant lines joining
P and the moving point Q, hence the above limit is also the slope of
the tangent line at P since as Q approaches P (or x approaches a), the
secant lines end up becoming the tangent line at P .

4.1.2.1. Tangent Line. Assume that f(x) is differentiable at x = a.
Then the slope of the tangent line to the graph y = f(x) at the point
(a, f(a)) is f ′(a) which is the derivative of f(x) at x = a. Thus, the
equation of the tangent line in point-slope form is

y − f(a) = f ′(a)(x− a)

4.1.2.2. Equivalent definition of the derivative. Imagine that the
distance between the points x and a is h. Then

x− a = h or x = a + h

We can then re-define our earlier limit. As x approaches a, the dis-
tance between them which is h gets smaller and smaller, therefore h
approaches 0. Using this new variable h we have an equivalent defini-
tion of the derivative.

Definition 4.3. The derivative of f(x) at x = a is the limit of
the quotient (if it exists)

(4.4) f ′(a) = lim
h→0

f(a + h)− f(a)

h

We will be using this new definition in most of the problems from
this section (You can use the other definition too, you will get the same
answer).
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Example 4.5. Find f ′(2) using both Equations 4.4 and 4.2.

f(x) = x2 + 9x

Solution. First let us use Equation 4.4. Here a = 2. Thus, f(2 +h) =
(2 + h)2 + 9(2 + h) = 4 + 4h + h2 + 18 + 9h = h2 + 13h + 22. On the
other hand, f(2) = 22 + 9 · 2 = 4 + 18 = 22. By Equation 4.4,

f ′(2) = lim
h→0

f(2 + h)− f(2)

h

= lim
h→0

(h2 + 13h + 22)− 22

h

= lim
h→0

h2 + 13h

h

= lim
h→0

h(h + 13)

h
= lim

h→0
(h + 13) = 13.

Now, let us use Equation 4.2. Here again a = 2. Thus by Equation
4.2,

f ′(2) = lim
x→2

f(x)− f(2)

x− 2

= lim
x→2

x2 + 9x− 22

x− 2

= lim
x→2

(x + 11)(x− 2)

x− 2
= lim

x→2
(x + 11) = 2 + 11 = 13.

�

Example 4.6. Find the equation of the tangent line to the curve y =
f(x) at the specified point a.

f(x) =
√
x + 4, a = 1

Solution. To find the equation of the tangent line we have to first find
the slope of the tangent line at the point x = 1. As we have seen before
the slope of the tangent line at x = 1 is f ′(1), hence let us find f ′(1)
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by using Equation 4.4,

f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

√
5 + h−

√
5

h

= lim
h→0

(
√

5 + h−
√

5)

h
· (
√

5 + h +
√

5)

(
√

5 + h +
√

5)

= lim
h→0

(5 + h)− 5

h(
√

5 + h +
√

5)

= lim
h→0

h

h(
√

5 + h +
√

5)

= lim
h→0

1√
5 + h +

√
5

=
1√

5 +
√

5
=

1

2
√

5

Thus, the slope of the tangent line is
1

2
√

5
. We can find the equation

of the tangent line using the point slope form.

y − f(1) =
1

2
√

5
(x− 1)

y −
√

5 =
x

2
√

5
− 1

2
√

5

y =
x

2
√

5
− 1

2
√

5
+
√

5

y =
x

2
√

5
+

9

2
√

5

�

4.2. The Derivative as a Function

4.2.1. Performance Criteria

(a) Use the derivative to calculate the derivative of a discrete func-
tion.

(b) Use derivative notations correctly.
(c) Use the graph of a function to draw the graph of the derivative.

4.2.2. The Derivative Function

In the previous section, we computed the derivative of f(x) at a spe-
cific point a which we denoted by f ′(a). Now, we find the “general”
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definition of the derivative of the function f(x). The definition stays
mostly the same with the a replaced by the variable x.

Definition 4.7. The derivative of the function f(x) is the new
function denoted by f ′(x) and is the limit

(4.8) f ′(x) = lim
h→0

f(x + h)− f(x)

h

if it exists. We say that f(x) is differentiable on (a, b) if f ′(x)
exists for all x in (a, b).

Example 4.9. Compute f ′(x) and find an equation of the tangent line
at x = 5.

f(x) =
1

x2

Solution. Let us find f ′(x) first and then we will find f ′(5). By Equa-
tion 4.8,

f ′(x) = lim
h→0

f(x + h)− f(x)

h

= lim
h→0

1

(x + h)2
− 1

x2

h

= lim
h→0

x2 − (x + h)2

hx2(x + h)2

= lim
h→0

x2 − (x2 + 2xh + h2)

hx2(x + h)2

= lim
h→0

−2xh− h2

hx2(x + h)2

= lim
h→0

h(−2x− h)

hx2(x + h)2

= lim
h→0

−2x− h

x2(x + h)2
=
−2x

x2 · x2
= − 2

x3

Therefore, f ′(5) = − 2

53
= − 2

125
, which is the slope of the tangent

line at x = 5. To find the equation of the tangent line, we use the
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point-slope form.

y − f(5) = f ′(5)(x− 5)

y − 1

25
= − 1

125
(x− 5)

y − 1

25
= − x

125
+

1

25

y = − x

125
+

2

25

�

4.2.3. Different notations for the derivative

We have already looked at f ′(x) which is one way to denote the de-
rivative of f(x). There is another standard notation for the derivative
that is due to Leibnitz.

dy

dx
It is read as “derivative of y with respect to x”, where y is the function
f(x). Remember, that you cannot “cancel” the d’s in the notation.

Sometimes the notation
df

dx
is also used. Thus, from the previous ex-

ample, if y =
1

x2
, then

dy

dx
= − 2

x3
or

d

dx
(x−2) = − 2

x3

To denote the value of the derivative at a specific point, say, x = 5, we
write

dy

dx

∣∣∣∣∣
x=5

= − 2

125

4.2.4. Some standard derivatives and Linearity rules

Since we now have a fairly decent idea of what a derivative is, therefore,
let us look at some standard derivatives. We do not want to use the
definition of the derivative involving limits all the time.

4.2.4.1. The Power Rule. For all exponents n,

(4.10)
d

dx
(xn) = nxn−1
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Example 4.11. Find

d

dx
(x−3/5)

Solution. By Equation 4.10, we have n = −3/5. Thus,

d

dx
(x−3/5) = −3

5
x−

3
5
−1 = −3

5
x−8/5

�

4.2.4.2. The derivative of ex. For the exponential constant e,

d

dx
(ex) = ex

4.2.4.3. Linearity Rules. Assume that the functions f(x) and
g(x) are differentiable. Then f(x)±g(x) and cf(x) for any constant
c are differentiable and,

(a)
d

dx
(f(x)± g(x)) =

df(x)

dx
± dg(x)

dx

(b)
d

dx
(cf(x)) = c

df(x)

dx

Example 4.12. Calculate
df

dt

∣∣∣∣∣
t=1

, where f(t) = 2t−2 + 3et − t−2/5.

Solution. Note that here the independent variable is t and so we are
finding the derivative of f with respect to t. Using the linearity rules
from above,

df

dt
= 2

d(t−2)

dt
+ 3

d(et)

dt
− d(t−2/5)

dt

= 2(−2)t−2−1 + 3et − (−2

5
)t−

2
5
−1

= −4t−3 + 3et +
2

5
t−7/5

�

Example 4.13. Find the points on the graph of f(x) = 12x−x3 where
the tangent is horizontal.
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Solution. For the tangent to be horizontal the slope has to be equal
to 0. Therefore, let us find the expression for the slope of the tangent
by finding derivative function.

f ′(x) =
df

dx
= 12

d(x)

dx
− d(x3)

dx
= 12 · 1x1−1 − 3x3−1

= 12− 3x2

The tangent is horizontal when

f ′(x) = 12− 3x2 = 0⇒ x = ±2

We find the y coordinates from f(2) = 12 · 2 − 23 = 16 and f(−2) =
12 · (−2) − (−2)3 = −16. Thus the two points where the tangent is
horizontal are (2, 16) and (−2,−16).

�

4.2.5. The graph of the derivative

Given the graph of the function, can we somehow sketch the graph of
its derivative function? It can be done. Let’s look at an example.

Example 4.14. The graph of f(x) is shown below. Use it to sketch
the graph of f ′(x).

1 4 7
x

y

Solution. We draw tangent lines at various point on the graph by red
lines.
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1 4 7
x

y

By looking at the shape of the tangent line at various intervals we have
the following information.

Slope of the tangent line (f ′(x)) Interval
Negative (0, 1) ∪ (4, 7)
Positive (1, 4) ∪ (7,∞)

Zero x = 1, 4, 7

As we see from the table above that f ′(x) is negative on the intervals
(0, 1) and (4, 7). We use this to sketch the graph of f ′(x) by drawing it
below the x-axis on those intervals. Note, however, that we sketch the
graph of f ′(x) on (0, 1) to be increasing. This is because if we look at
the changing shape of the tangent line on (0, 1), we see that the slopes
of the tangent lines are increasing. Similarly, even though the slope of
the tangent line is negative on the interval [4, 7], the slope is decreasing
between 4 and approximately 6 and increasing thereafter until 7. Let
us graph a partial section of the graph on the intervals where f ′(x) is
negative.
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1 4 7
x

y

The graph of f ′(x) crosses the x-axis at x = 1, 4, 7, since those are the
points where the slope of the tangent line is zero. (the tangent is hori-
zontal.) f ′(x) is positive on the intervals (1, 4) and (7,∞). However, if
we look at the shape of the tangent lines we see that the slopes of the
tangent line is increasing between 1 and approximately 2.5, and starts
to decrease thereafter until 4. (the slope is still positive everywhere on
[1, 4]) Similarly, the slope of the tangent line keeps increasing after 7.
If we put all this information together with the previous partial graph
that we had, we end with the complete picture of the graph of f ′(x).

1 4 7
x

y

�
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4.2.6. Relation between Differentiability and Continuity

We have already looked at one definition of differentiability before in
terms of existence of a certain limit. (refer to Equations 4.2 and 4.4)
Now let us look at an “informal” way of determining whether a function
is differentiable at a certain point by looking at its graph.

If a graph of a function has a “break” or a “corner” at any

point then the function is not differentiable at that point.

We have already see what a “break” means on a graph when we
looked at continuity before, but what does a “corner” mean? Let’s look
at the graph below.

1 3−1−3
x

y

This is the graph of the function f(x) = |x|. The graph doesn’t seem
to have any “break” anywhere, so informally it seems to be continuous
everywhere. However the graph is not “smooth” at the origin. The
graph has a “corner” there. It abruptly changes direction at the ori-
gin. Hence we can informally say that the function f(x) = |x| is not
differentiable at x = 0. Now let us prove the same fact rigorously,

Example 4.15. Show that f(x) = |x| is continuous but not differen-
tiable at x = 0.
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Solution. The function f(x) is continuous at x = 0 because lim
x→0
|x| =

0 = f(0). However, for differentiability we need to check the existence
of the limit below. By Equation 4.4,

f ′(0) = lim
h→0

f(0 + h)− f(0)

h

The left hand limit is

lim
h→0−

f(0 + h)− f(0)

h
= lim

h→0−

f(h)− |0|
h

= lim
h→0−

|h|
h

= lim
h→0−

−h
h

(Since |h| = −h when h < 0)

= lim
h→0−

−1 = −1.

whereas the right hand limit is

lim
h→0+

f(0 + h)− f(0)

h
= lim

h→0+

f(h)− |0|
h

= lim
h→0+

|h|
h

= lim
h→0+

h

h
(Since |h| = h when h ≥ 0)

= lim
h→0+

1 = 1.

As we can see the left hand and the right hand limits are not the same,
therefore

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
does not exist

Hence, f(x) = |x| is not differentiable at x = 0.

�
Now let us look at an important relation between differentiability

and continuity by means of this theorem.

Theorem 4.16. If a function f is differentiable at x = a, then f is
continuous at x = a, i.e. differentiability implies continuity.

Note that the other way round is not true as we saw in the previous
example. The function f(x) = |x| was continuous at x = 0, but was not
differentiable at x = 0. However, the contrapositive of the statement
is true.
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Corollary 4.17. If a function f is not continuous at x = a, then it is
not differentiable at x = a.

4.3. Product and Quotient Rules

4.3.1. Performance Criteria

(a) Calculate explicit derivatives of functions of polynomials and
exponential functions with the power, product and quotient
rules.

4.3.2. Product Rule

In this section we learn another powerful tool by which we can com-
pute the derivatives of more complicated functions which are written
as products.

Definition 4.18. Product Rule If f(x) and g(x) are differen-
tiable functions of x, then f(x)g(x) is differentiable too and

d

dx
(f(x)g(x)) = f(x)

d(g(x))

dx
+ g(x)

d(f(x))

dx
or in short,

(fg)′ = fg′ + gf ′

Example 4.19. Find the derivative of h(x) = (x2 + 3x)(2x− 1).

Solution. Here we clearly see a product, so let f(x) = x2 + 3x and
g(x) = 2x− 1. Then by the Product Rule,

h′(x) = (x2 + 3x)
d(2x− 1)

dx
+ (2x− 1)

d(x2 + 3x)

dx
= (x2 + 3x) · 2 + (2x− 1)(2x + 3)

= 2x2 + 6x + 4x2 + 4x− 3

= 6x2 + 10x− 3.

�

Example 4.20. Find the derivative of h(t) =
(

2t2 +
1

t

)
et.
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Solution. Here again we have a product so we let f(t) = 2t2 +
1

t
and

g(t) = et. Then by the Product Rule,

h′(t) =
(

2t2 +
1

t

)d(et)

dt
+ et

d(2t2 + 1
t
)

dt

=
(

2t2 +
1

t

)
et + et

(
4t− 1

t2

)
= 2t2et +

et

t
+ 4tet − et

t2

= et
(

2t2 +
1

t
+ 4t− 1

t2

)
�

4.3.3. Quotient Rule

Now we learn another powerful tool by which we can compute the
derivatives of more complicated functions which are written as quo-
tients.

Definition 4.21. Quotient Rule If f(x) and g(x) are differen-

tiable functions of x, then
f(x)

g(x)
is differentiable too for all x such

that g(x) 6= 0, and

d

dx

(f(x)

g(x)

)
=

g(x)
d(f(x))

dx
− f(x)

d(g(x))

dx
g(x)2

or in short, (f
g

)′
=

gf ′ − fg′

g2

The important things to note here are the terms in the numerator
and the denominator of the derivative. They have to be in that same
exact form.

Example 4.22. Compute the derivative of h(x) =
2x

x3 − 1
.



16 DIBYAJYOTI DEB, HANDOUT 4

Solution. The function is a quotient, hence we let f(x) = 2x and
g(x) = x3 − 1. By the Quotient Rule,

h′(x) =
(x3 − 1)

d(2x)

dx
− 2x

d(x3 − 1)

dx
(x3 − 1)2

=
(x3 − 1) · 2− 2x(3x2)

(x3 − 1)2

=
2x3 − 2− 6x3

(x3 − 1)2

=
−4x3 − 2

(x3 − 1)2

�

Example 4.23. Find h′(2), where

h(x) =
x2 + ex

x + 1

Solution. Let us first find h′(x). Since h(x) is a quotient, therefore let
f(x) = x2 + ex and g(x) = x + 1. By the Quotient Rule,

h′(x) =
(x + 1)

d(x2 + ex)

dx
− (x2 + ex)

d(x + 1)

dx
(x + 1)2

=
(x + 1)(2x + ex)− (x2 + ex) · 1

(x + 1)2

=
2x2 + xex + 2x + ex − x2 − ex

(x + 1)2

=
x2 + x(2 + ex)

(x + 1)2

Therefore,

h′(2) =
22 + 2(2 + e2)

(2 + 1)2
=

8 + 2e2

9

�
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6.1. Trigonometric Functions

6.1.1. Performance Criteria

(a) Calculate explicit derivatives of trigonometric functions.

6.1.2. Derivatives of trigonometric functions

We have already seen different techniques of differentiation which led
us to finding derivatives of some complicated functions. We have also
looked at some standard functions and their derivatives. In this section
we look at some more standard functions and learn their derivatives and
use them to find the derivatives of even more complicated functions.

6.1.2.1. Derivatives of Sine and Cosine. The derivatives of sinx
and cos x are as follows.

Theorem 6.1. The functions y = sinx and y = cosx are differen-
tiable and,

d

dx
sinx = cosx and

d

dx
cosx = − sinx

Example 6.2. Find the derivative of the function f(x) = ex sinx.

Solution. We use the product rule in this case with our two functions
g(x) = ex and h(x) = sin x. Recall that the product rule states that if
g and h are functions of x, then

(gh)′ = g′h+ gh′

1
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Therefore,

f ′(x) = sinx
d

dx
(ex) + ex

d

dx
(sinx)

= sin x · ex + ex · cosx

= ex(sinx+ cosx)

�

6.1.2.2. Derivatives of additional standard trigonometric func-
tions. We now look at the remaining standard trigonometric functions
and their derivatives.

Theorem 6.3. The functions y = tanx, y = secx, y = cscx and
y = cotx are differentiable and,

d

dx
tanx = sec2 x

d

dx
secx = secx tanx

d

dx
cotx = − csc2 x

d

dx
cscx = − cscx cotx

Example 6.4. Find the derivative of the function f(x) =
1 + tan x

1− tanx
.

Solution. We use the quotient rule in this case with our two functions
g(x) = 1 + tanx and h(x) = 1 − tanx. Recall that the quotient rule
states that if g and h are functions of x, then(g

h

)′
=
hg′ − gh′

h2

Therefore,

f ′(x) =
(1− tanx)

d

dx
(1 + tan x)− (1 + tanx)

d

dx
(1− tanx)

(1− tanx)2

=
(1− tanx) sec2 x− (1 + tan x)(− sec2 x)

(1− tanx)2

=
sec2 x− tanx sec2 x+ sec2 x+ tanx sec2 x

(1− tanx)2

=
2 sec2 x

(1− tanx)2

�
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Example 6.5. Find an equation of the tangent line to the curve y =

cscx− cotx at the point x =
π

4
.

Solution. To find the equation of the tangent line at a point we have
to find the slope of the tangent line at that point first. This amounts
to finding the derivative of f(x) = csc x− cotx at the point x = π

4
.

f(x) = cscx− cotx

f ′(x) = − cscx cotx− (− csc2 x)

= − cscx cotx+ csc2 x

Therefore, f ′(
π

4
) = − csc(

π

4
) cot(

π

4
) + csc2(

π

4
)

= −
√

2 · 1 + (
√

2)2

= −
√

2 + 2.

We find the y-coordinate of the point by finding

f(
π

4
) = csc(

π

4
)− cot(

π

4
) =
√

2− 1.

We use the point-slope form with slope m = 2−
√

2 and point (
π

4
,
√

2−
1) to find the equation of the tangent line.

y − (
√

2− 1) = (2−
√

2)(x− π

4
)

y = (2−
√

2)x− (2−
√

2)
π

4
+ (
√

2− 1)

�
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6.2. The Chain Rule

6.2.1. Performance Criteria

(a) Calculate explicit derivatives of functions of polynomials, trigono-
metric functions, exponential, and logarithmic functions with
the power, quotient, product, and chain rule.

6.2.2. The Chain Rule

In this section, we finally look at the most powerful technique that we
will learn in the context of differentiation. Before we start looking at
it, let us recall the definition of a composite function.

Given two function f and g of x, the composite of f and g is
denoted by f ◦ g and is defined to be

(f ◦ g)(x) = f(g(x))

So, for example if h(x) = sin(x4), then we can say the h(x) is the
composite function f(g(x)) where f(x) = sinx and g(x) = x4. Here we
can also call f(x) the “outer function” and g(x) the “inner function”.

Chain Rule shows us a way of finding the derivative of a composite
function.

Theorem 6.6. Chain Rule If f and g are differentiable functions
of x, then the composite function (f ◦ g)(x) = f(g(x)) is differen-
tiable and

(f(g(x))′ = f ′(g(x))g′(x)

In other words, when we want to use the chain rule to find the
derivative of a function h(x), our steps should include

1. Identifying the function given as a composition f(g(x)) along
with the “outer function”, f(x) and the “inner function” g(x).

2. Find f ′(x)
3. Find f ′(g(x)).
4. Find g′(x).
5. Write h′(x) = f ′(g(x))g′(x).

Example 6.7. Find the derivative of the function y = sin(x4).

Solution. We recognize that sin(x4) can be written as the composite
function f(g(x)) where f(x) = sinx and g(x) = x4. We find the
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derivative of the “outer” function sinx, which is f ′(x) = cos x and the
derivative of the “inner” function x4, which is g′(x) = 4x3. Now,

f ′(g(x)) = f ′(x4) = cos(x4)

Therefore,
dy

dx
= f ′(g(x))g′(x) = cos(x4) · 4x3

�
We can also rewrite the chain rule using Leibniz notation.

If y = f(u), and u = g(x), then

dy

dx
=
dy

du

du

dx

Example 6.8. Calculate the derivative of y = e2x
2
.

Solution. Here we identify the “outer” function f(x) = ex and the
“inner” function g(x) = 2x2. Therefore, f ′(x) = ex and g′(x) = 4x.

Now f ′(g(x)) = e2x
2
. Hence,

dy

dx
= f ′(g(x))g′(x) = e2x

2 · 4x

�

Example 6.9. An expanding sphere has radius r = 0.4t cm at time
t (in seconds). Let V be the sphere’s volume. Find dV/dt when (a)
r = 3 and (b) t = 3.

Solution. The volume of a sphere of radius r is given by

V =
4

3
πr3

We see here that V is a function of r and r is a function of t and we
are asked to find dV/dt which is the derivative of V with respect to t.
By the Chain Rule,

dV

dt
=
dV

dr

dr

dt
We see that

dV

dr
= 4πr2 and

dr

dt
= 0.4

Therefore,
dV

dt
= 4πr2 · 0.4 = 1.6πr2
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Now
dV

dt

∣∣∣∣∣
r=3

= 1.6π · 32 = 14.4π cc/sec

Since dV/dt is a function of r, therefore we need to find the value of r
when t = 3. Using the relation between r and t,

r = 0.4t = 0.4 · 3 = 1.2 cm

Therefore,

dV

dt

∣∣∣∣∣
r=1.2

= 1.6π · (1.2)2 = 2.304π cc/sec

�
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5.1. Rates of Change

5.1.1. Performance Criteria

(a) Determine instantaneous rate of change from the derivative.
(b) Use derivative to find marginal cost and marginal profit.
(c) Given a position function, determine the velocity and acceler-

ation for a particle in rectilinear motion.
(d) Solve problems involving motion under the influence of gravity.

5.1.2. Different rates of change

In this section we look at some applications of the derivative function
that we learnt before. First, we look at the relation between the de-
rivative and the instantaneous rate of change. Recall the definition of
the average rate of change from before. If,

∆y = Change in y = f(x)− f(a) and

∆x = Change in x = x− a

then,

Average rate of change =
∆y

∆x
=

f(x)− f(a)

x− a

Now recall the way we found the instantaneous rate of change. We did
that by computing the average rate of change over very small intervals.
This mean as x gets closer to a the difference quotient from above
approaches the instantaneous rate of change at x = a. Therefore, we
can define the instantaneous rate of change as

Instantaneous rate of change at x = a = f ′(a) = lim
x→a

f(x)− f(a)

x− a

1
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As far as the geometric interpretations go, the average rate of change
is the slope of the secant line (blue) joining the points (x, f(x)) and
(a, f(a)) and the instantaneous rate of change is the slope of the tangent
line (red) at the point (a, f(a)) as shown below.

y

x

∆f

∆x

a x

(x, f(x))

(a, f(a))

y

x
a

(a, f(a))

Example 5.1. Find the rate of change of the volume of a cube with
respect to its side s when s = 5.

Solution. For a cube of side s, its volume V (s) is s3. The question
asks us to find the rate of change at the point s = 5, which means that
we have to find the instantaneous rate of change at that point. By our
earlier definition, the (instantaneous) rate of change of V when s = 5
is given by,

V ′(5) =
dV

ds

∣∣∣∣∣
s=5

Now

V (s) = s3

V ′(s) = 3s2

V ′(5) = 3 · 52 = 75 cubic units per unit

�
Looking at the previous problem, what exactly does V ′(5) mean?

By using the definition of the derivative at a point we see that V ′(5) =
75 is equivalent to saying that if we increase the length of each side
of the cube from 5 by a very small amount, then the corresponding
change in the volume of the cube would be close to 75 cubic units.
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5.1.3. Effect of a One-Unit Change

We know that for small values of h (instead of saying h → 0), the
difference quotient is close to the derivative itself, i.e.

(5.2) f ′(a) ≈ f(a + h)− f(a)

h

In some cases, h need not be very small rather h = 1 is enough for a
good approximation. Therefore, substituting h = 1 in Equation 5.2 we
have

(5.3) f ′(a) ≈ f(a + 1)− f(a)

Hence, f ′(a) is approximately equal to the change of f caused by a
one-unit change in x when x = a.

5.1.3.1. Marginal Cost in Economics. One of the important appli-
cations of the above approximation is in economics where we find the
marginal cost of an item. The marginal cost at a certain production
level is the cost of producing one additional unit.

Thus, if C(x) denote the cost of producing x units of a particular
product, then the number of x units manufactured is called the pro-
duction level. Hence, the marginal cost at production level a is given
by

Marginal cost = C(a + 1)− C(a)

Here Equation 5.3 usually gives a decent approximation, so we can use
C ′(a) as an estimate for the marginal cost.

Example 5.4. The dollar cost of producing x donuts is C(x) = 300 +
0.25x−0.5(x/1000)3. Determine the cost of producing 2000 donuts and
estimate the cost of the 2001st donut. Compare your estimate with the
actual cost of the 2001st donut.

Solution. The cost to produce 2000 donuts is

C(2000) = 300 + 0.25(2000)− 0.5(2000/1000)3 = $796

The derivative is C ′(x) = 0.25 − 1.5x2/10003. We can estimate the
marginal cost (cost to produce 1 additional item at current production
level) at x = 2000 by the derivative

C ′(2000) = 0.25− 1.5(2000)2/10003 = $0.244.

Actual cost of producing 2001 donuts is

C(2001) = 300 + 0.25(2001)− 0.5(2001/1000)3 = $796.24399
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Hence, the difference in the actual cost between production of 2000 and
2001 donuts is $796.24399−$796 = $0.24399 which is very close to the
approximation of the marginal cost.

�

5.1.4. Linear Motion

Linear motion is the motion of a particle along a straight line. If s(t)
denotes the position or distance of a particle from the origin at time t,
then

v(t) = Velocity =
ds

dt
Thus, Velocity is the rate of change of position with respect to time.
Speed is defined as the absolute value of the velocity.

Speed = |v(t)| =

∣∣∣∣∣dsdt
∣∣∣∣∣

Example 5.5. A particle moving along a line has position s(t) =
t4 − 18t2 m at time t seconds. At which times does the particle pass
through the origin? At which times is the particle instantaneously
motionless (that is, it has zero velocity)?

Solution. Since s(t) denotes the distance of the particle from the ori-
gin, therefore the particle passes through the origin when s(t) = 0.
Solving for t we have,

t4 − 18t2 = 0

t2(t2 − 18) = 0

t2 = 0 and t2 = 18

This implies that the particle passes through the origin at times t = 0
and t =

√
18 = 3

√
2 seconds.

To find the times when the particle has zero velocity, we find the
expression for the velocity.

v(t) =
ds

dt
= 4t3 − 36t

Equating v(t) = 0 we have,

4t3 − 36t = 0

4t(t2 − 9) = 0

4t = 0 and t2 = 9
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This implies that the particle has zero velocity at time t = 0 and
t =
√

9 = 3 seconds.

�

5.1.5. Motion under the influence of Gravity

Now we look at motion under the influence of gravity. This could be
a falling object or an object tossed vertically up. Galileo discovered
that the height s(t) of an object rising or falling under the influence of
gravity near the earth’s surface is given by

(5.6) s(t) = s0 + v0t−
1

2
gt2

where s0 is the initial position, v0 is the initial velocity and g is the
acceleration due to gravity (g ≈ 9.8 m/s2 or 32 ft/s2). We can find the
velocity of this object by finding the derivative,

(5.7) v(t) =
ds

dt
= v0 − gt

Note that the maximum height is attained by an object tossed vertically
up when v(t) = 0.

Example 5.8. A ball tossed in the air vertically from ground level
returns to earth 6 s later. Find the initial velocity and maximum
height of the ball.

Solution. Since the ball is tossed from ground level, therefore the
initial position of the ball s0 = 0. After 6 seconds the ball hits the
ground, therefore s(6) = 0. Using Equation 5.6 we have

s(6) = 0 + 6v0 −
1

2
(9.8)(62)

0 = 6v0 − 176.4

6v0 = 176.4

v0 = 29.4 m/s.

To find the maximum height, we find the time when v(t) = 0. Now by
Equation 5.7,

v(t) = v0 − gt = 29.4− 9.8t

Setting it equal to zero we have,

29.4− 9.8t = 0

9.8t = 29.4

t = 3 seconds.
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Therefore, the height reached after 3 seconds is

s(3) = 29.4(3)− 1

2
(9.8)32 = 44.1 m.

�

5.2. Higher Derivatives

5.2.1. Performance Criteria

(a) Calculate higher order derivatives.
(b) Given a position function, determine the velocity and acceler-

ation for a particle in rectilinear motion.

5.2.2. Higher order derivatives

We have already learned how to find derivatives of most functions using
different rules. Now we look at how we can compute higher deriva-
tives. Higher derivatives are obtained by repeatedly differentiating a
function y = f(x).

Thus, if f(x) is differentiable, then the first derivative (which is

the usual derivative) is denoted by
dy

dx
or f ′(x). Now if f ′ is differen-

tiable, then the second derivative, is the derivative of f ′(x) and is
denoted by

f ′′(x) =
d2y

dx2

So what exactly does
d2y

dx2
mean?

d2y

dx2
=

d

dx

(dy
dx

)
Again, don’t think that we are multiplying

d

dx
with

dy

dx
here. We are

finding the derivative of the function
dy

dx
with respect to x. Thus,

continuing this way we can say that the nth derivative of f , provided
that f is n-differentiable (i.e. all the previous n − 1 derivatives exist)
is denoted by

f (n)(x) =
dny

dxn

Example 5.9. Calculate f (4)(1) for f(x) = 4x6 − 3x5 + 7x4 − 9x3 +
2x2 − 10.



5.2. Higher Derivatives 7

Solution. Let’s find all the four derivative of f .

f(x) = 4x6 − 3x5 + 7x4 − 9x3 + 2x2 − 10

f ′(x) =
d

dx
(4x6 − 3x5 + 7x4 − 9x3 + 2x2 − 10) = 24x5 − 15x4 + 28x3 − 27x2 + 4x

f ′′(x) =
d

dx
(24x5 − 15x4 + 28x3 − 27x2 + 4x) = 120x4 − 60x3 + 84x2 − 54x + 4

f ′′′(x) =
d

dx
(120x4 − 60x3 + 84x2 − 54x + 4) = 480x3 − 180x2 + 168x− 54

f (4)(x) =
d

dx
(480x3 − 180x2 + 168x− 54) = 1440x2 − 360x + 168

Therefore,

f (4)(1) = 1440 · 12 − 360 · 1 + 168 = 1248.

�

5.2.3. Acceleration

We have already seen the relationship between the position function
s(t) and the velocity function v(t) earlier. Velocity is the rate of change
of position with respect to time. Hence,

v(t) =
ds

dt
= s′(t)

A natural question to ask is, what is the average rate of change of
velocity with respect to time? This is called the acceleration of a
particle at time t and is denoted by a(t). Hence,

a(t) =
dv

dt
= v′(t) =

d2s

dt2
= s′′(t)

So, what does it mean for a(t) = 0? Since a(t) is the derivative of v(t),
therefore v(t) must be constant in order for its derivative to be zero,
which means that the particle is travelling at a constant speed.

Example 5.10. Find the acceleration a(t) of a ball tossed vertically
in the air from the ground level with an initial velocity of 15 m/s.

Solution. By Galileo’s formula (Equation 5.6), the height of the ball
at time t is given by

s(t) = s0 + v0t−
1

2
gt2

For this problem s0 = 0 (since it is tossed from the ground), v0 = 15
(since that is the initial velocity) and g = 9.8, thus

s(t) = 15t− 4.9t2
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Therefore,
s′(t) = v(t) = 15− 9.8t

and
v′(t) = a(t) = −9.8 m/s2

As expected, the acceleration is constant with value −g = −9.8 m/s2.
As the ball rises and falls, its velocity changes from 15 to −15 m/s at
the constant rate −g.

�
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7.1. Derivatives of Inverse Functions

7.1.1. Performance Criteria

(a) Calculate explicit derivatives of inverse trigonometric func-
tions.

7.1.2. Derivative of the Inverse

In this section we learn about the derivatives of inverse trigonometric
functions. Before we jump into that, let’s recap some facts about a
function and its inverse.

7.1.2.1. Inverse Functions. When a function f(x) is one-one, then
it is invertible i.e. it has an inverse. We usually denote the inverse
function by f−1(x) (Note that this is not the reciprocal of f). The
function f and its inverse f−1 have the property

f(a) = b⇐⇒ f−1(b) = a

The two most important properties of a function f and its inverse f−1

are
f(f−1(x)) = x and f−1(f(x)) = x

Our goal now is to find the derivative of the inverse function i.e.
(f−1(x))′. We use one of the above compositions in order to do that.

f(f−1(x)) = x

Taking derivatives on both sides and applying Chain Rule on the left
we have

f ′(f−1(x))(f−1(x))′ = 1

(f−1(x))′ =
1

f ′(f−1(x))

1
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Thus, for a ∈ Domain (f−1),

(7.1) (f−1(x))′
∣∣∣
x=a

=
1

f ′(f−1(a))

Example 7.2. Calculate g′(−2), where g is the inverse of f .

f(x) = 4x3 − 2x

Solution. By Equation 7.1, we have,

(g(x))′
∣∣∣
x=−2

=
1

f ′(g(−2))

Since g is the inverse of f , therefore if,

g(−2) = a then f(a) = −2

If we set f(a) = −2 then we have,

4a3 − 2a = −2

which if we solve by guessing a small value of a (this is how we have
to do it here since solving a cubic equation is harder than normal), we
get a = −1.

Therefore, since f(−1) = −2, hence g(−2) = −1. Also,

f ′(x) = 12x2 − 2

and
f ′(g(−2)) = f ′(−1) = 12(−1)2 − 2 = 10

Therefore,

(g(x))′
∣∣∣
x=−2

=
1

f ′(g(−2))
=

1

10

�

7.1.3. Derivatives of Inverse Trigonometric Functions

We look at some standard derivatives of inverse trigonometric functions
in this section. These coupled with all the rules that we have learned
before will help us in evaluating the derivatives of more complicated
functions.

Theorem 7.3. The derivatives of the inverse trigonometric func-
tions y = sin−1 x, y = cos−1 x, y = tan−1 x, y = sec−1 x,
y = csc−1 x and y = cot−1 x are as follows,

d

dx
sin−1 x =

1√
1− x2

d

dx
cos−1 x = − 1√

1− x2
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d

dx
tan−1 x =

1

1 + x2
d

dx
sec−1 x =

1

|x|
√
x2 − 1

d

dx
cot−1 x = − 1

1 + x2
d

dx
csc−1 x = − 1

|x|
√
x2 − 1

Example 7.4. Find the derivative of f(x) = (tan−1 x)3.

Solution. We use the Chain Rule with the outer function x3 and the
inner function tan−1 x since their composition gives f . The derivative

of x3 at tan−1 x is 3(tan−1 x)2 and the derivative of tan−1 x is
1

1 + x2
.

Hence, by the Chain Rule,

f ′(x) =
3(tan−1 x)2

1 + x2

�

Example 7.5. Find the derivative of f(x) = ecos
−1 x.

Solution. We use the Chain Rule with the outer function ex and the
inner function cos−1 x since their composition gives f . The derivative

of ex at cos−1 x is ecos
−1 x and the derivative of cos−1 x is − 1√

1− x2
.

Hence, by the Chain Rule,

f ′(x) = − ecos
−1 x

√
1− x2

�
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7.2. Derivatives of General Exponential and Loga-
rithmic Functions

7.2.1. Performance Criteria

(a) Calculate explicit derivatives of exponential and logarithmic
functions with power, quotient, product and chain rule.

(b) Use Logarithmic differentiation to calculate the derivative of
certain functions.

7.2.2. Derivative of the Exponential Function

An exponential function is of the form

f(x) = ax, a > 0, a 6= 1

The derivative of the exponential function is

d

dx
(ax) = (ln a)ax

Note that when a = e, then, we have our special natural exponential
function and its derivative.

d

dx
(ex) = (ln e)ex = ex

Example 7.6. Find the derivative of y = 8sinx.

Solution. We use the Chain Rule with the outer function 8x and the
inner function sinx since their composition gives f . The derivative of
8x at sinx is (ln 8)8sinx and the derivative of sinx is cosx. Hence, by
the Chain Rule,

f ′(x) = (ln 8)8sinx cosx

�

7.2.3. Derivative of the Logarithmic Function

The general logarithmic function is of the form

f(x) = loga x, a > 0, x > 0, a 6= 1

When a = e we have the natural logarithmic function which we denote
by lnx. The derivative of the natural logarithmic function is

d

dx
(lnx) =

1

x
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So what is the derivative of the general logarithmic function? By
the change of bases formula for logarithms,

loga x =
logb x

logb a

If we pick b = e, then

loga x =
loge x

loge a
=

lnx

ln a

Therefore,

d

dx
(loga x) =

d

dx

( lnx

ln a

)
=

1

x ln a

Example 7.7. Find the equation of the tangent line to the curve y =

ln(sinx) at x =
π

4
.

Solution. To find the equation of the tangent line we first have to find
the slope which amounts to finding the derivative of the function at

x =
π

4
We find the derivative of ln(sinx) by using the Chain Rule. The

outer function in this case is ln x and the inner function is sin x since
their composition gives ln(sinx). The derivative of the outer function

at the inner function is
1

sinx
= cscx and the derivative of sinx is cosx.

Hence, by the Chain Rule,

dy

dx
=

( 1

sinx

)
cosx = cotx

and
dy

dx

∣∣∣
x=π

4

= cot(
π

4
) = 1

Now, using the point slope form we have,

y − f(
π

4
) = 1(x− π

4
)

y − ln(
1√
2

) = x− π

4

y = x− π

4
+ ln(

1√
2

)

�

Example 7.8. Find the derivative of y = log3(x
2 − 1).
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Solution. We use the change of base formula to write

y = log3(x
2 − 1) =

ln(x2 − 1)

ln 3

Therefore,
dy

dx
=

1

ln 3
· d
dx

(ln(x2 − 1))

By the Chain Rule,

d

dx
(ln(x2 − 1)) =

2x

x2 − 1

Hence,
dy

dx
=

2x

(ln 3)(x2 − 1)

�

7.2.4. Logarithmic Differentiation

Sometimes certain functions are easy to differentiate if we use the rules
of logarithm first on them. Let’s look at the function

y =
(x3 − 2)(2x2 − 3x+ 5)3

(4x3 − 1)2

If we want to find
dy

dx
then we have to use the quotient rule and then

the product rule and also the chain rule at some point. The whole
operation would be messy and would take a long time. Instead, we use
the rules to logarithm to write the expression as a sum and difference
of logarithms. We first apply natural logarithm (logarithm with any
base can be similarly applied) on both sides.

ln y = ln
(x3 − 2)(2x2 − 3x+ 5)3

(4x3 − 1)2

ln y = ln(x3 − 2) + ln(2x2 − 3x+ 5)3 − ln(4x3 − 1)2

ln y = ln(x3 − 2) + 3 ln(2x2 − 3x+ 5)− 2 ln(4x3 − 1)

Now we apply the derivative with respect to x on both sides,

d

dx
(ln y) =

d

dx
(ln(x3− 2)) +

d

dx
(3 ln(2x2− 3x+ 5))− d

dx
(2 ln(4x3− 1))

By the Chain Rule, the derivative of ln y with respect to x is
1

y
· dy
dx

.

This is because, we can pick our outer function to be lnx and our
inner function to be y, since their composition gives ln y. Hence, the
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derivative of the outer function at the inner function is
1

y
and the

derivative of the inner function y with respect to x is just
dy

dx
. Therefore

applying the Chain Rule to each of the functions on the right we have,

1

y
· dy
dx

=
3x2

x3 − 2
+

3(4x− 3)

2x2 − 3x+ 5
− 24x2

4x3 − 1

dy

dx
= y

( 3x2

x3 − 2
+

3(4x− 3)

2x2 − 3x+ 5
− 24x2

4x3 − 1

)
Replacing the y by the original equation we have,

dy

dx
=

(x3 − 2)(2x2 − 3x+ 5)3

(4x3 − 1)2

( 3x2

x3 − 2
+

3(4x− 3)

2x2 − 3x+ 5
− 24x2

4x3 − 1

)
�

Let us look at another example.

Example 7.9. Find the derivative of y = xe
x
.

Solution. Here we apply the natural logarithm again to make the
function simpler to differentiate.

ln y = lnxe
x

ln y = ex lnx

Now we apply the derivative with respect to x on both sides and as
before we use the Chain Rule and Product Rule to find the derivative
of the functions.

d

dx
(ln y) =

d

dx
(ex lnx)

1

y
· dy
dx

=
ex

x
+ ex lnx

dy

dx
= y

(ex
x

+ ex lnx
)

= xe
x
(ex
x

+ ex lnx
)

�
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8.1. Implicit Differentiation

8.1.1. Performance Criteria

(a) Use the rules of differentiation to find derivatives explicitly and
implicitly.

(b) Use implicit differentiation to calculate implicit derivatives of
inverse trigonometric functions and implicit equations.

8.1.2. Implicit Functions

Until now we have seen and worked with “explicit” functions. These
are functions where the y and x are separated i.e. if y is a function of
x then,

y = f(x)

Now, we look at “implicit” functions. These are functions where the x
and the y are not separated. Hence these are of the form

f(x, y) = 0

An example of a function of this type is

xy2 + x2y = x3 + 3

In this section we look at methods by which we can find dy/dx for an
implicit function of x and y.

8.1.3. Implicit Differentiation

To find dy/dx of an implicit function of x and y, we follow few simple
steps. It is best if we look at a specific example.

Example 8.1. Find dy/dx for

x2 + y2 = 4

1
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Solution. We follow these steps to find the answer.

Step 1. We take the derivative with respect to x on both sides. Hence,
we have,

d

dx
(x2 + y2) =

d

dx
(4)

d

dx
(x2) +

d

dx
(y2) =

d

dx
(4)

Step 2. Now we find the derivatives of each of these functions sepa-
rately. The derivative of x2 with respect to x is 2x. To find
the derivative of y2 with respect to x we use the Chain Rule.
The outer function is x2 and the inner function is y, since their
composition gives y2.

By the Chain Rule we find the derivative of the outer func-
tion with respect to x to get 2x. When we evaluate this result
at the inner function which is y we get 2y. The derivative of
the inner function y, with respect to x is dy/dx. Hence, by the
Chain Rule,

d

dx
(y2) = 2y

dy

dx

The derivative of 4 with respect to x is 0, since 4 is a constant.
Hence, we have

2x + 2y
dy

dx
= 0

Step 3. Once we have found the derivative on both sides with respect
to x, we then solve for dy/dx.

2x + 2y
dy

dx
= 0

2y
dy

dx
= −2x

dy

dx
= −x

y

�
We look at some more examples.

Example 8.2. Using implicit differentiation find dy/dx for

sin(x + y) = x + cos y

Solution. We follow these steps to find the answer.
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Step 1. We take the derivative with respect to x on both sides. Hence,
we have,

d

dx
(sin(x + y)) =

d

dx
(x + cos y)

d

dx
(sin(x + y)) =

d

dx
(x) +

d

dx
(cos y)

Step 2. We now find the derivative of each of these functions separately.
To find the derivative of sin(x+ y), we use the Chain Rule. In
this case, the outer function is sin x and the inner function is
x + y, since their composition is sin(x + y).

By the Chain Rule, the derivative of sinx with respect to
x is cosx. When we evaluate this result at the inner function
x + y we have cos(x + y). The derivative of the inner function
x + y with respect to x is

d

dx
(x + y) =

d

dx
(x) +

d

dx
(y) = 1 +

dy

dx

Hence,

d

dx
(sin(x + y)) = cos(x + y)

(
1 +

dy

dx

)
The derivative of x with respect to x is 1. To find the derivative
of cos y with respect to x, we use the Chain Rule. In this case,
the outer function is cosx and the inner function is y, since
their composition is cos y. The derivative of the outer function
is − sinx which when evaluated at the inner function y, gives
− sin y. The derivative of the inner function y with respect to
x is dy/dx. Hence,

d

dx
(cos y) = − sin y

dy

dx

Putting them together we have,

d

dx
(sin(x + y)) =

d

dx
(x) +

d

dx
(cos y)

cos(x + y)
(

1 +
dy

dx

)
= 1 − sin y

dy

dx
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Step 3. We now solve for dy/dx.

cos(x + y)
(

1 +
dy

dx

)
= 1 − sin y

dy

dx

cos(x + y) + cos(x + y)
dy

dx
= 1 − sin y

dy

dx

cos(x + y)
dy

dx
+ sin y

dy

dx
= 1 − cos(x + y)

dy

dx

(
cos(x + y) + sin y

)
= 1 − cos(x + y)

dy

dx
=

1 − cos(x + y)

cos(x + y) + sin y

�

Example 8.3. Find the equation of the tangent line at the point (2, 1)
to the curve

xy + x2y2 = 5

Solution. To find the equation of the tangent line we first have to find
dy/dx at the specified point. To find dy/dx, we follow these steps.

Step 1. We take the derivative with respect to x on both sides. Hence,
we have,

d

dx
(xy + x2y2) =

d

dx
(5)

d

dx
(xy) +

d

dx
(x2y2) =

d

dx
(5)

Step 2. We now find the individual derivatives. To find the derivative
of xy with respect to x, we use the Product rule,

d

dx
(xy) = x

d

dx
(y) + y

d

dx
(x)

= x
dy

dx
+ y

To find the derivative of x2y2 with respect to x, we again use
the Product rule since x2y2 is the product of two functions x2

and y2,

d

dx
(x2y2) = x2 d

dx
(y2) + y2

d

dx
(x2)

= x2 · 2y
dy

dx
+ y2 · 2x

= 2x2y
dy

dx
+ 2xy2
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Since 5 is a constant, therefore

d

dx
(5) = 0

Putting them all together we have

d

dx
(xy) +

d

dx
(x2y2) =

d

dx
(5)

x
dy

dx
+ y + 2x2y

dy

dx
+ 2xy2 = 0

Step 3. We now solve for dy/dx.

x
dy

dx
+ y + 2x2y

dy

dx
+ 2xy2 = 0

x
dy

dx
+ 2x2y

dy

dx
= −y − 2xy2

dy

dx
(x + 2x2y) = −y − 2xy2

dy

dx
=

−y − 2xy2

x + 2x2y

We find the slope of the tangent line at (2, 1) by finding

dy

dx

∣∣∣∣∣
(2,1)

=
−1 − 2 · 2 · 12

2 + 2 · 22 · 1
= −1

2

We use the point-slope form to find the equation of the tangent line.

y − 1 = −1

2
(x− 2)

y − 1 = −x

2
+ 1

y = −x

2
+ 2

�
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8.2. Related Rates

8.2.1. Performance Criteria

(a) Set up and solve word-problems with related differential rates
of change.

8.2.2. Related Rates

Now, we look at applications of the derivative. We have seen that
the derivative of y with respect to x (i.e. dy/dx) computes the rate of
change of y with respect to x. In this section we calculate the unknown
rate of change in terms of other rates of change that are known.

We follow 3 steps in order to solve problems in this section.

Step 1. As the initial problem is written in sentences, therefore, we
assign variables and restate the problem. It is sometimes useful
if we draw a picture describing the problem.

Step 2. We next find an equation relating the variables and then dif-
ferentiate to introduce the derivatives.

Step 3. Now we use the information provided to find the unknown
derivative.

Let us use these steps to solve few problems. Remember, every problem
is different and there is no specific way of solving a problem. We might
have to use results in elementary geometry or trigonometry to construct
the equation that we need to differentiate.

Example 8.4. Consider a rectangular bathtub whose base is 18 ft2.
At what rate is water pouring into the tub if the water level rises at a
rate of 0.8 ft/min?

Solution. We begin by drawing a picture of the bathtub. Let us denote
the height of water at any instant of time t by h.

Step 1. Since we have to find the rate at which water is being poured,
therefore if we denote the volume of water in the tub at any
instant of time t by V (t), then we are asked to find dV/dt.
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Now, since the height (h) of the water in the tub rises at
the rate of 0.8 ft/min, therefore dh/dt = 0.8. Hence,

Find
dV

dt
given that

dh

dt
= 0.8

Step 2. Now we find an equation relating the variables and then dif-
ferentiate both sides to introduce the derivatives. Since, the
height of the water level at any instant of time t is h, hence
the volume of the water at that instant is

V (t) = Area of the base × h = 18h

We take the derivative with respect to t on both sides to get,

dV

dt
= 18

dh

dt

Step 3. Now we find dV/dt given that dh/dt = 0.8. Hence,

dV

dt
= 18 × 0.8 = 14.4 ft3/min.

�

Example 8.5. A man of height 1.8 meters walks away from a 5-meter
lamppost at a speed of 1.2 m/s. Find the rate at which his shadow is
increasing in length.

Solution. We first draw a picture of this problem.

Step 1. We denote the distance of man from the lamppost at any in-
stant by x and the length of his shadow at the same instant
by y. Since the rate at which the man is walking away from
the lamppost is 1.2 m/s therefore, dx/dt = 1.2. We have to
find the rate at which his shadow is increasing in length, i.e.
we are asked to find dy/dt. Hence,

Find
dy

dt
given that

dx

dt
= 1.2



8 DIBYAJYOTI DEB, HANDOUT 8

Step 2. Now we find an equation involving the variables x and y. To
find an equation involving x and y, we notice that we have two
similar triangles in the picture. The triangle ABC is similar to
the triangle DEC. Comparing the ratio of their sides we have

AB

DE
=

BC

EC
5

1.8
=

x + y

y
5y = 1.8x + 1.8y

3.2y = 1.8x

Taking derivatives on both sides with respect to t we have,

3.8
dy

dt
= 1.2

dx

dt
Step 3. Now we are given dx/dt = 1.2 and we are supposed to find

dy/dt. Therefore,

3.2
dy

dt
= 1.8 × 1.2 = 2.16

dy

dt
=

2.16

3.2
= 0.675 m/s

Therefore the shadow of the man is increasing at the rate of 0.675 m/s.

�
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9.1. Extreme Values

9.1.1. Performance Criteria

(a) Calculate the local maxima and minima and also the absolute
max and min of a function on an interval.

(b) Use the derivative of a function to determine where it is in-
creasing and where it is decreasing.

(c) Distinguish between the extrema of a function and the loca-
tions of those extrema.

9.1.2. Extrema

In this section we look at how we can find the extreme values or
extrema of a function. In other words we will look at how we can find
the maximum and minimum of a function f on an interval I.

There are two types of extrema that we will be discussing. Global
or Absolute extrema and Local extrema. We first look at the
definition of local extrema.

Definition 9.1. Local Extrema - We say that f(x) has a

• Local minimum at x = a if f(a) is the minimum value of
f on some open interval (in the domain of f) containing a.
• Local maximum at x = a if f(a) is the maximum value

of f on some open interval (in the domain of f) containing
a.

This means that if a local maximum occurs at x = a, then the
point (a, f(a)) is the highest point (peak) within some neighborhood

1
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of (a, f(a)) on the graph. Similarly if a local minimum occurs at x =
a, then the point (a, f(a)) is the lowest point (valley) within some
neighborhood of (a, f(a)) on the graph.

Now let’s look at the definition of absolute extrema.

Definition 9.2. Absolute Extrema - We say that f(x) has an

• Absolute minimum at x = a on an interval I (a ∈ I) if
f(a) ≤ f(x) for all x ∈ I.
• Absolute maximum at x = a on an interval I (a ∈ I) if
f(a) ≥ f(x) for all x ∈ I.

This means that to find the absolute maximum, we look for the
largest maximum (highest peak) among all the local maximum’s. Sim-
ilarly, to find the absolute minimum, we looks for the smallest minimum
(lowest valley) among all the local minimum’s. The next picture shows
absolute extrema and local extrema in one graph.

What happens if the interval I is an open interval? We can see cases
where their might not be any extrema (local or global), i.e. their may
not be any peaks or valleys. This is shown in the next picture.
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However, we don’t have this problem when we have a closed interval
I. Thus,

Theorem 9.3. A continuous function f(x) on a closed (bounded)
interval I = [a, b] takes on both a minimum and a maximum value
on I.

9.1.3. Critical Points

Now, we ask ourselves the question,

Given a function f(x), how do we find its local extrema?

If we look at the pictures above, we notice that the tangent line is
horizontal at points where there is a local maximum or local minimum.
Is this sufficient enough to detect peaks (local maximum) and valleys
(local minimum)? What if we have a graph like the one below.
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We see above that the local minimum occurs at a point where the
function is not differentiable (since it has a corner at that point). The
tangent line at that point is not defined. Thus,

Definition 9.4. Critical Points - A point a in the domain of f
is called a critical point if either f ′(a) = 0 or f ′(a) does not exist.

Example 9.5. Find the critical points of

f(x) = sin−1 x− 2x

Solution. The domain of f is the interval [−1, 1]. Thus, we want to
find points on this interval where f ′(x) is either equal to zero or is
undefined. Now,

f ′(x) =
1√

1− x2
− 2

f ′(x) = 0

1√
1− x2

− 2 = 0

√
1− x2 =

1

2

1− x2 =
1

4

x2 =
3

4

x = ±
√

3

2
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Now f ′(x) is not defined at x = ±1 (that is where x2 − 1 = 0). Hence,
the critical points of f are

±
√

3

2
,±1

�
We could now ask ourselves the question,

Does every critical point a make f(a) a local extrema?

This is not true as if we take the function f(x) = x3, we see that
f ′(x) = 3x2 which makes x = 0 a critical point, however, f ′(0) is
neither a local maximum nor a local minimum. Thus,

Theorem 9.6. If f(a) is a local minimum of maximum, then a is
a critical point of f(x) but not the other way around.

We have now arrived at a point where we need to know how to find
the extreme values. In the next subsection we look at how we can find
the extreme values on a closed interval.

9.1.4. Extreme Values on a Closed Interval

From previous excursions we have seen that if f(a) is a local extremum
then a is a critical point. Since the interval is closed, therefore, there
is a possibility for the extremum to happen at the endpoints of the
interval. Hence we will follow these steps to find the local extremum
on a closed interval [a, b].

Step 1. Find the critical points on the interval [a, b].
Step 2. Find the values f(a), f(b) at the endpoints and f(c) for every

critical points c from Step 1.
Step 3. The maximum of all values from Step 2 is the absolute maxi-

mum of f(x) on [a, b] and the minimum of all values from Step
2 is the absolute minimum of f(x) on [a, b].

Let’s look at an example where we use this strategy.

Example 9.7. Find the maximum and minimum of the function on
the given interval.

f(x) = x3 − 24 lnx,
[1

2
, 3
]

Solution.Step 1. We first find the critical points of f .

f ′(x) = 3x2 − 24

x
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f ′(x) = 0

3x2 − 24

x
= 0

3x3 = 24

x3 = 8

x = 2

f ′(x) is not defined at x = 0, however, 0 does not lie on the
interval [1

2
, 3]. Hence, the only critical point of f(x) is at x = 2.

Step 2. We find,

f
(1

2

)
=
(1

2

)3
− 24 ln

(1

2

)
= 16.76

f(3) = 33 − 24 ln(3) = 0.63

f(2) = 23 − 24 ln(2) = −8.64

Step 3. Hence the maximum of f(x) on [1
2
, 3] is 16.76 which is attained

at x = 1
2

and the minimum is -8.64 which is attained at x = 2.

�

9.2. L’Hôpital’s Rule

9.2.1. Performance Criteria

(a) Calculate limits with LHôpital’s rule.

9.2.2. Indeterminate Forms

We have looked at limits earlier. In this section we look at special types
of functions which become indeterminate at the point where we have
to evaluate the limit. Consider the limit

lim
x→a

f(x)

g(x)

If f(a) = 0 and g(a) = 0 then we say that f(x)/g(x) has an indeter-
minate form. This is also true if f(a) → ∞ and g(a) → ∞. In this
case how do we evaluate the limit of the quotient? The next theorem
answers this question.

Theorem 9.8. L’Hôpital’s Rule Assume that f(x) and g(x) are
differentiable on an open interval containing a and that

f(a) = g(a) = 0
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Also assume that g′(x) 6= 0 (except possibly at a). Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

if the limit on the right exits or is infinite. This conclusion also
holds if f(x) and g(x) are differentiable for x near a and

lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞

What the above theorem states is that if f(x)/g(x) is of the form
0/0 or ∞/∞ as x approaches a, then we can instead find the limit of
f ′(x)/g′(x) as approaches a and so on.

Example 9.9. The form ∞/∞.
Evaluate the limit.

lim
x→∞

3x3 + 2x2

5x3 − 4

Solution. Since 3x3 + 2x2 → ∞ as x → ∞ and 5x3 − 4 → ∞ as
x→∞, hence the quotient is the indeterminate form∞/∞. We apply
the L’Hôpital’s Rule,

lim
x→∞

3x3 + 2x2

5x3 − 4
= lim

x→∞

9x2 + 4x

15x2

Now we evaluate this new limit. We see that 9x2 + 4x → ∞ as x →
∞ and 15x2 → ∞ as x → ∞, hence the new quotient is also an
indeterminate form ∞/∞. Therefore, we still apply the L’Hôpital’s
Rule,

lim
x→∞

9x2 + 4x

15x2
= lim

x→∞

18x + 4

30x
In this new limit we see that 18x+ 4→∞ as x→∞ and 30x→∞ as
x → ∞, hence the new quotient is also an indeterminate form ∞/∞.
Therefore, we still keep applying the L’Hôpital’s Rule,

lim
x→∞

18x + 4

30x
= lim

x→∞

18

30
=

3

5

�
Let’s look at another example.

Example 9.10. The form 0/0.
Evaluate the limit.

lim
x→0

e2x − 1− x

x2
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Solution. Since e2x − 1− x = 0 when x = 0 and x2 = 0 when x = 0,
therefore the quotient is an indeterminate form 0/0. We apply the
L’Hôpital’s Rule,

lim
x→0

e2x − 1− x

x2
= lim

x→0

2e2x − 1

2x

Now as 2e2x− 1 = 1 when x = 0 and 2x = 0 when x = 0. Thus, this is
not an indeterminate form, however the numerator is a finite number
while the denominator approaches zero as x approaches zero. Hence,
the limit does not exist.

�
What happens if the function is not a quotient? Let’s look at an

example where we tackle this situation.

Example 9.11. The form 0 · ∞.
Evaluate the limit.

lim
x→0+

√
x lnx

Solution. For this function as x→ 0+,

•
√
x→ 0

• lnx→ −∞
Hence,

√
x lnx is of the form 0 · ∞ (We can leave the − sign since it

can always be pulled out). This is not an indeterminate form. So we
have to somehow write it in the form 0/0 or ∞/∞ before we can use
the L’Hôpital’s Rule. We do this by writing the function as

√
x lnx =

lnx
1√
x

Now as x→ 0+,

• lnx→ −∞
• 1/
√
x→∞

Hence, this new form of the function is of the form −∞/∞ so we apply
L’Hôpital’s Rule to get,

lim
x→0+

lnx
1√
x

= lim
x→0+

1

x

−1

2
x−3/2

= lim
x→0+

−2x3/2

x

= lim
x→0+

−2x1/2 = 0.
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�
Let’s look at another function that is not a quotient but a difference.

Example 9.12. The form ∞−∞.
Evaluate the limit.

lim
x→0

(
cotx− 1

x

)
Solution. Here are x→ 0,

• cotx→∞
• 1/x→∞

Hence, this function is of the form ∞−∞, which is an indeterminate
form. We have to now write it in the form 0/0 or ∞/∞ before we can
use the L’Hôpital’s Rule. We do this by combining the functions using
a common denominator.

cotx− 1

x
=

cosx

sinx
− 1

x
=

x cosx− sinx

x sinx

This new form of the function is of the form 0/0 so we apply L’Hôpital’s
Rule to get,

lim
x→0

(x cosx− sinx

x sinx

)
= lim

x→0

−x sinx + cosx− cosx

x cosx + sinx

= lim
x→0

−x sinx

x cosx + sinx

= lim
x→0

−x cosx− sinx

−x sinx + cosx + cosx

= lim
x→0

−x cosx− sinx

−x sinx + 2 cosx

The last limit can be evaluated by substituting 0 for x to get

lim
x→0

−x cosx− sinx

−x sinx + 2 cosx
=
−0− 0

−0 + 2
= 0

�
Now let’s look at another form.

Example 9.13. The form 00.
Evaluate the limit.

lim
x→0+

xx

Solution. Here as x→ 0+,

• x→ 0
• sinx→ 0
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Hence, this function is of the form 00. We compute the limit of the
logarithm lnxx = x lnx.

We see that x lnx is of the form 0 · ∞ as x→ 0+. Hence,

lim
x→0+

lnxx = lim
x→0+

x lnx = lim
x→0+

lnx
1

x

= lim
x→0+

1

x
−x−2

= lim
x→0+

(−x) = 0

By property of limits,

lim
x→0+

ln(xx) = ln( lim
x→0+

xx) = 0

Exponentiating both sides we get,

lim
x→0+

xx = e0 = 1.

�


