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An Introduction to Ordinary
Differential Equations

Lecture 1
Dibyajyoti Deb

1.1. Outline of Lecture

• What is a Differential Equation?
• Solutions of Some Differential Equations
• Classifying Diff. Eqns.: Order, Linear vs. Nonlinear

1.2. What is a Differential Equation?

Many of the principles, or laws, underlying the behavior of the natural
world are statements or relations involving rates at which things hap-
pen. When expressed in mathematical terms, the relations are equa-
tions and the rates are derivatives. Equations containing derivatives
are differential equations. You’ve probably all seen an ordinary dif-
ferential equation (ODE); for example the physical law that governs
the motion of objects is Newton’s second law, which states that the
mass of the object times its acceleration is equal to the net force on the
object. In mathematical terms this law is expressed by the equation

(1.1) F = m
dv

dt
.

where m is the mass of the object, v is its velocity, t is the time and
F is the net force exerted on the object. Here t is the independent
variable and v is the dependent variable. This is an ODE because
there is only one independent variable, here t which represents time.

A partial differential equation (PDE) relates the partial derivatives
of a function of two or more independent variables together. For ex-
ample, the heat conduction equation,

(1.2) α2∂
2u(x, t)

∂x2
=
∂u(x, t)

∂t
1
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arises in many places in mathematics and physics. Here α2 is a phys-
ical constant. For simplicity, we can use subscript notation for partial
derivatives, so this equation can also be written α2uxx = ut.

We say a function is a solution to a differential equation if it sat-
isfies the equation and any side conditions given. Mathematicians are
often interested in if a solution exists and when it is unique.

1.3. Solution to some differential equations

Let’s look into the differential equation from the previous section in
more detail. What are the forces that act on the object as it falls?

Gravity exerts a force equal to the weight of the object, or mg,
where g is the acceleration due to gravity. There is also a force due to
air resistance, or drag, that is more difficult to model. Let’s assume
that the drag force is proportional to the velocity. Thus the drag force
has a magnitude γv, where γ is a constant called the drag coefficient.

Gravity always acts in the downward (positive) direction, whereas
drag acts in the upward (negative) direction. Thus

(1.3) m
dv

dt
= mg − γv

To solve this equation, divide by m. Note that m, g and γ are constants
for this model.

(1.4)
dv

dt
= g − γ

m
v

We would like to isolate the terms involving v and t such that we can
integrate both sides.

(1.5)
dv

dt
= − γ

m
(v − gm

γ
)

After cross multiplying

(1.6)
dv

v − gm

γ

= − γ
m
dt

Integrate both sides ∫
dv

v − gm

γ

=

∫
− γ
m
dt

ln |v − gm

γ
| = −γt

m
+ C

v − gm

γ
= ±e−

γt
m

+C
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Simplifying the right side and replacing ±eC with C1 (another con-
stant), we have,

(1.7) v(t) =
gm

γ
+ C1e

−
γt

m

This expression contains all possible solutions of Eq. (1.4) and is called
the general solution. The geometrical representation of the general
solution 1.7 is an infinite family of curves called integral curves. Each
integral curve is associated with a particular value of C1 and is the
graph corresponding to that value of C1.

Now if the ball is ”dropped” from a certain height then it is clear
that the initial velocity is zero. Therefore v(0) = 0. We can use this
additional condition to determine C1. This is an example of an initial
condition. The differential equation together with the initial condition
form an initial value problem.

1.4. Classifying Diff. Eqns.: Order, Linear vs. Non-
linear

We have already discussed the difference between an ordinary and a
partial differential equation. When classifying differential equations we
need to look at the order of a differential equation. The order of a
differential equation is the order of the highest derivative present in the
equation. For example Eq. 1.4 is a first order ODE. More generally,
the equation

(1.8) F [t, x(t), x′(t), . . . , x(n)(t)] = 0

is an ordinary differential equation of the nth order.
A crucial classification of differential equations is whether they are

linear or nonlinear. The ordinary differential equation

(1.9) f(t, y, y′, . . . , y(n)) = 0,

is said to be linear if F is a linear function of the variable y, y′, . . . , y(n);
a similar definition applies to partial differential equations. Thus the
general linear ordinary differential equation of order n is

(1.10) an(t)y(n) + an−1(t)y
(n−1) + . . .+ a0(t)y = g(t).

The most important thing to note about linear differential equations
is that there are no products of the function, y(t), and its derivatives
and neither the function or its derivatives are used in determining if a
differential equation is linear. For example Eq. 1.4 is a linear equation.
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An equation that is not of the form 1.10 is a nonlinear equation. An
example of a nonlinear equation would be

(1.11) y′′ + 2yy′ = t3

because of the presence of the term yy′. We will be looking at differ-
ences between linear and nonlinear equations in more detail in a later
lecture.



First Order Differential
Equations
Lecture 2
Dibyajyoti Deb

2.1. Outline of Lecture

• Linear Equations; Method of Integrating Factors
• Separable Equations
• Modeling with First Order Equations

2.2. Linear Equations; Method of Integrating Fac-
tors

The most general first order equation is of the form

(2.1)
dy

dt
= f(t, y)

where f is a given function of two variables. Any differential function
y = φ(t) that satisfies this equation for all t in some interval is called
a solution, and the object is to determine whether such functions exist
and, if so, to develop methods for finding them. Unfortunately, for an
arbitrary function f , there is no general method of solving the equation
in terms of elementary functions.

If the function f in Eq. (2.1) depends linearly on the dependant
variable y, then Eq. (2.1) is called a first order linear equation.

The general first order linear equation is of the form

(2.2)
dy

dt
+ p(t)y = g(t),

where both p(t) and g(t) are continuous functions.
The method described in the previous lecture to solve the differen-

tial equation describing the motion of the falling object doesn’t work
here. So we need a different method of solution for it. It involves multi-
plying the differential equation (2.2) by a certain function µ(t), chosen

1
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so that the resulting equation is readily integrable. The function µ(t)
is called an integrating factor.

We look into the method of finding the integrating factor briefly.
We multiply Eq. (2.2) by µ(t), obtaining

(2.3) µ(t)
dy

dt
+ µ(t)p(t)y = µ(t)g(t)

We see that the left side of Eq. (2.3) is the derivative of the product
µ(t)y if we assume that µ(t) will satisfy the following

(2.4)
dµ(t)

dt
= p(t)µ(t)

We have
dµ(t)

µ(t)
= p(t) dt

and consequently

lnµ(t) =

∫
p(t) dt+ C.

after integrating both sides. By choosing the arbitrary constant C to
be zero, we obtain the simplest possible function for µ, namely,

(2.5) µ(t) = e

∫
p(t) dt

.

An example is shown below which uses the method of integrating fac-
tors to solve a first order linear equation.

Example 1. Solve the initial value problem.

ty′ + 2y = t2 − t+ 1, y(1) =
1

2
, t > 0

Solution 1. We bring the original equation to the form (2.2) by di-
viding both sides of the equation by t.

(2.6) y′ +
2

t
y = t− 1 +

1

t

The integrating factor is µ(t) = e

∫
2

t
dt

= t2. Multiplying both sides
of the above equation by t2 we get

(2.7) t2y′ + 2ty = t3 − t2 + t

The left side of the equation is the derivative of the product t2y. There-
fore

(2.8)
d(t2y)

dt
= t3 − t2 + t
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Multiplying both sides by dt and then integrating both sides, we have

(2.9) t2y =
t4

4
− t3

3
+
t2

2
+ C

To find C we use the initial value condition to get

1

2
=

1

4
− 1

3
+

1

2
+ C

Therefore C =
1

12
.

Using this value of C in Eq. (2.9), and then dividing by t2 we have
the solution to the initial value problem.

(2.10) y =
t2

4
− t

3
+

1

2
+

1

12t2

2.3. Separable Equations

In this section we look into a subclass of nonlinear equations that can
be solved by direct integration. We can rewrite the general first order
equation (2.1) in the form

(2.11) M(x, y) +N(x, y)
dy

dx
= 0

If it happens that M is a function of x only and N is a function of y
only, then the above equation becomes

(2.12) M(x) +N(y)
dy

dx
= 0

Such an equation is said to be separable, because it can be written in
the differential form

(2.13) M(x) dx+N(y) dy = 0

We can solve the above the equation by integrating the functions
M and N . Usually this results in an implicit solution. We illustrate
this in the following example.

Example 2. Solve the equation

dy

dx
=

x3

1− y2

Solution 2. Cross multiplication makes the equation separable for
integration

(2.14)

∫
(1− y2) dy =

∫
x3 dx
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Integrating both sides(and bringing the constants on one side) we get

y − y3

3
=
x4

4
+ C

Therefore

(2.15) y − y3

3
− x4

4
= C

where C is an arbitrary constant. Note that the final general solution
(2.15) is implicit.

2.4. Modeling with First Order Equations

Now that we have a general idea of first order equations, we can use
them to investigate a wide variety of problems in the physical, biological
and social sciences. There are three basic steps in solving a problem
using differential equation.

• Construction of the model - In this step, translate the physical
situation into mathematical terms. The differential equation
is a mathematical model of the process.
• Analysis of the model - Once the problem has been formulated

mathematically, it’s time to solve the one or more differential
equations involved with the model (or atleast finding out as
much as possible about the properties of the solution).
• Comparison with Experiment or Observation - Finally, having

obtained the solution ( or atleast some information about it),
interpret this information in the context in which the problem
arose.

We look at an example below.

Example 3. A tank initially contains 120 L of pure water. A mixture
containing a concentration of γ g/L of salt enters the tank at a rate of
3 L/min, and the well-stirred mixture leaves the tank at the same rate.
Find an expression in terms of γ for the amount of salt in the tank at
any time t. Also find the limiting amount of salt in the tank as t→∞.

Solution 3. Since the incoming and outgoing flows of water are the
same, the amount of water in the tank remains constant at 120 L. Let
the amount of salt in the tank at any time t be denoted by Q(t). Thus

(2.16)
dQ

dt
= rate in - rate out
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where ”rate in” and ”rate out” refers to the rate at which the salt flows
into and out of the tank, respectively.

(2.17) rate in = γ g/L× 3 L/min = 3γ g/min.

The concentration of salt in the tank at any time t is
Q(t)

120
g/L, thus

(2.18) rate out =
Q(t)

120
g/L× 3 L/min =

Q(t)

40
g/min.

To make it convenient we omit the units during our calculation. There-
fore,

(2.19)
dQ

dt
= 3γ − Q(t)

40
dQ

dt
=

120γ −Q(t)

40
This is a first order separable equation (Note that (2.19) is also a first
order linear equation).

Cross multiplication makes the equation separable for integration.

(2.20)

∫
dQ

Q(t)− 120γ
=

∫
− dt

40

Integrating both sides we have,

(2.21) ln |Q(t)− 120γ| = − t

40
+ C

To find C, note that the tank initially contains pure water, therefore
Q(0) = 0. Using this in the above equation we have C = ln |120γ|.
Putting this value of C back into the above solution and simplifying
we have,

(2.22) Q(t) = 120γ + |120γ|e−t/40

The initial condition is true if |120γ| = −120γ. Therefore the final
solution is

(2.23) Q(t) = 120γ − 120γe−t/40

To find the limiting amount of salt as t→∞, we find

lim
t→∞

Q(t) = lim
t→∞

(120γ − 120γe−t/40) = 120γ.

This means that after a very long time the amount of salt in the tank
will be 120γ g.



First Order Differential
Equations
Lecture 3
Dibyajyoti Deb

3.1. Outline of Lecture

• Differences Between Linear and Nonlinear Equations
• Exact Equations and Integrating Factors

3.2. Differences between Linear and Nonlinear Equa-
tions

We have looked at first order equations so far, both linear and nonlin-
ear. We have developed methods of solving linear equations and some
subclasses of nonlinear equations. We now discuss some important
ways in which nonlinear equations differ from linear ones.

• Existence and Uniqueness of Solutions. So far, we have
discusses a number of initial value problems, each of which had
a solution and apparently only one solution. This raises the
question whether every initial value problem has exactly one
solution. The answer to this question is given by the following
theorem.

Theorem 3.1. If the functions p and g are continuous on
an open interval I : α < t < β containing the point t = t0,
then there exists a unique function y = φ(t) that satisfies the
differential equation

(3.2)
dy

dt
+ p(t)y = g(t)

for each t in I, and that also satisfies the initial condition has
a unique solution.

(3.3) y(t0) = y0

1



2 DIBYAJYOTI DEB, FIRST ORDER DIFFERENTIAL EQUATIONS

where y0 is an arbitrary prescribed initial value.

Note that Theorem 3.1 states that the given initial value
problem has a solution and also that the problem has only
one solution. In other words, the theorem asserts both the
existence and uniqueness of the solution of the solution of the
initial value problem.

We apply this theorem in the next example.

Example 1. Find an interval in which the solution of the
initial value problem is certain to exist.

(3.4) (t− 3)y′ + (ln t)y = 2t, y(1) = 2

Solution 1. Rewriting the above equation in the standard
form, we have

y′ +
ln t

t− 3
y =

2t

t− 3

So p(t) =
ln t

t− 3
and g(t) =

2t

t− 3
. g is continuous for all

t 6= 3. p is continuous for all t 6= 0, 3. Therefore p and g
are both continuous on the interval (−∞, 0) ∪ (0, 3) ∪ (3,∞).
The interval (0, 3) contains the initial point t = 1. Therefore
Theorem 3.1 guarantees that the problem has a unique solution
on the interval 0 < t < 3.

We now turn our attention to nonlinear differential equa-
tions and modify Theorem 3.1 by a more general theorem.

Theorem 3.5. Let the function f and ∂f/∂y be continuous
in some rectangle α < t < β, γ < t < δ containing the point
(t0, y0). Then, in some interval t0 − h < t < t0 + h containing
in α < t < β, there is a unique solution y = φ(t) of the initial
value problem

(3.6) y′ = f(t, y), y(t0) = y0.

This is a more general theorem since it reduces to Theorem
3.1 if the differential equation is linear. For then f(t, y) =
−p(t)y + g(t) and ∂f(t, y)/∂y = −p(t), so the continuity of f
and ∂f/∂y is equivalent to the continuity of p and g in this
case.

Note that the conditions stated in Theorem 3.5 are suf-
ficient to guarantee the existence of a unique solution of the
initial value problem (3.6) in some interval t0−h < t < t0 +h,
but they are not necessary. That is, the conclusion remains
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true under slightly weaker hypotheses about the function f .
In fact, the existence of solution (but not its uniqueness) can
be established on the basis of the continuity of f alone.

We look at an example below making use of the above
theorem.

Example 2. Solve the given initial value problem and deter-
mine how the interval in which the solution exists depends on
the initial value y0.

(3.7) y′ = −4t

y
, y(0) = y0

Solution 2. For this equation f = −4t/y and ∂f/∂y = 4t/y2.
f and ∂f/∂y are continuous in any rectangle where y 6= 0.
This is also a separable equation. Cross multiplication makes
the equation separable for integration.∫

y dy =

∫
−4t dt

Integrating both sides we have,

(3.8)
y2

2
= −2t2 + C

for some constant C. Using the initial values we have C = y20/2.
Using this value for C and simplifying both sides we have

y = ±
√
−4t2 + y20

However we would like to find out the interval where the solu-
tion exists. The term inside the radical has to be non-negative.
Therefore 4t2 < y20 or |t| < |y0|/2. By Theorem 3.5, we get the
extra condition that y0 6= 0 (Since f and ∂f/∂y are continuous
in any rectangle where y 6= 0 containing the point (0, y0)).

Therefore the solution looks like

(3.9) y = ±
√
−4t2 + y20, y0 6= 0, |t| < |y0|/2.

Now let’s look at some other differences between linear and
nonlinear equations.
• Interval of Definition. According to Theorem 3.1, the solu-

tion to a linear equation (3.2) subject to the initial condition
y(t0) = y0, exists throughout any interval about t = t0 in which
the functions p and g are continuous.

On the other hand, for a nonlinear initial value problem
satisfying the hypotheses of Theorem 3.5, the interval in which
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a solution exists may be difficult to determine. This is be-
cause it is not so easy to determine the solution y = φ(t) of a
nonlinear equation unlike a linear equation.
• General Solution. Another way in which linear and nonlin-

ear equations differ concerns the concept of general solution.
For a first order linear equation it is possible to obtain

a solution containing one arbitrary constant, from which all
possible solutions follow by specifying values for this constant
as we have seen in the previous lecture.

For nonlinear equations this is not the case; even though a
solution containing an arbitrary constant may be found, there
may be other solutions that cannot be obtained by giving val-
ues to this constant.
• Implicit Solutions. The solution for an initial value problem

of a first order linear equation provides an explicit formula for
the solution y = φ(t).

However for a nonlinear equation, the solution is implicit
in nature, of the form F (t, y) = 0.

3.3. Exact Equations and Integrating Factors

In this section we look at a different class of nonlinear equations known
as exact equations for which there is also a well-defined method of
solution. We define an exact equation in the next theorem along with
another result.

Theorem 3.10. Let the functions M,N,My, and Nx, where subscripts
denote partial derivatives, be continuous in the rectangular region R :
α < x < β, γ < y < δ. Then

(3.11) M(x, y) +N(x, y)y′ = 0

is an exact differential equation in R if and only if

(3.12) My(x, y) = Nx(x, y)

at each point of R. That is, there exists a function ψ satisfying

(3.13) ψx(x, y) = M(x, y), ψy(x, y) = N(x, y),

if and only if M and N satisfy Eq. (3.12).

To find the expression for the solution to the equation (3.11) we see
that,

(3.14) M(x, y) +N(x, y)y′ =
∂ψ

∂x
+
∂ψ

∂y

dy

dx
=

d

dx
ψ(x, y)
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Therefore Eq. (3.11) becomes

(3.15)
d

dx
ψ(x, y) = 0.

Hence the solution to Eq. (3.11) is given implicitly by

(3.16) ψ(x, y) = C.

for an arbitrary constant C. Let’s illustrate the above theorem in the
next example.

Example 3. Determine whether the equation is exact. If it is exact,
find the solution.

(3.17) (3x2 − 2xy + 2) dx+ (6y2 − x2 + 3) dy = 0.

Solution 3. M(x, y) = 3x2 − 2xy + 2 and N(x, y) = 6y2 − x2 + 3.
Therefore My(x, y) = −2x and Nx(x, y) = −2x. Since they are the
same, hence Eq. (3.17) is exact. Thus there is a ψ(x, y) such that

ψx(x, y) = 3x2 − 2xy + 2.

ψy(x, y) = 6y2 − x2 + 3.

Integrating the first of these equations with respect to x, we obtain

(3.18) ψ(x, y) = x3 − x2y + 2x+ h(y).

Differentiating the above equation with respect to y, we obtain,

ψy(x, y) = −x2 + h′(y).

Setting ψy = N gives

−x2 + h′(y) = 6y2 − x2 + 3.

Thus h′(y) = 6y2 + 3 and h(y) = 2y3 + 3y. The constant of inte-
gration can be omitted since any solution of the preceding equation is
satisfactory. Substituting for h(y) in Eq. (3.18) gives

(3.19) ψ(x, y) = x3 − x2y + 2x+ 6y2 − x2 + 3.

Hence solutions of Eq. (3.17) are given implicitly by

(3.20) x3 − x2y + 2x+ 6y2 − x2 + 3 = C.

A valid question to ask now is what happens when the initial equa-
tion isn’t exact. In that situation it is sometimes possible to convert
it into an exact equation by multiplying the equation by a suitable
integrating factor µ(x, y).

Unfortunately even though integrating factors are powerful tools
for solving differential equations, in practice they can be found only in
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special cases. The most important situations in which simple integrat-
ing factors can be found occur when µ is a function of only one of the
variables x or y, instead of both.

If (My −Nx)/N is a function of x only, then there is an integrating
factor µ that also depends on x and it satisfies the differential equation

(3.21)
dµ

dx
=
My −Nx

N
µ

If (Nx−My)/M is a function of y only, then there is an integrating
factor µ that also depends on y and it satisfies the differential equation

(3.22)
dµ

dy
=
Nx −My

M
µ

Finally we look into an example in which the equation is not exact
to begin with but is made exact by multiplying with an integrating
factor.

Example 4. Find an integrating factor for the equation

(3.23) (3xy + y2) + (x2 + xy)y′ = 0.

and then solve the equation.

Solution 4. Here M(x, y) = 3xy + y2 and N(x, y) = x2 + xy. My 6=
Nx, therefore the differential equation isn’t exact. We compute (My −
Nx)/N and find that

My −Nx

N
=

3x+ 2y − (2x+ y)

x2 + xy
=

1

x
.

Thus there is an integrating factor µ that is a function of x only, and
it satisfies the differential equation

(3.24)
dµ

dx
=
µ

x

Solving the above differential equation we have µ(x) = x. Multiplying
Eq. (3.23) by this integrating factor, we obtain

(3.25) (3x2y + xy2) + (x3 + x2y)y′ = 0.

This equation is exact. Therefore there exists a function ψ(x, y), such
that

ψx(x, y) = 3x2y + xy2.

ψy(x, y) = x3 + x2y.

Integrating the first of these equations with respect to x, we obtain

(3.26) ψ(x, y) = x3y +
x2y2

2
+ h(y).
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Differentiating the above equation with respect to y, we have

ψy(x, y) = x3 + x2y + h′(y).

Setting ψy = N gives

x3 + x2y + h′(y) = x3 + x2y.

Therefore h′(y) = 0, hence h(y) = C = 0. We can choose this constant
to be zero since any solution of the preceding equation is satisfactory.
Substituting for h(y) in Eq. (3.26) gives

(3.27) ψ(x, y) = x3y +
x2y2

2
.

Hence solutions of Eq. (3.23) are given implicitly by

(3.28) x3y +
x2y2

2
= C.



First and Second Order
Differential Equations

Lecture 4
Dibyajyoti Deb

4.1. Outline of Lecture

• The Existence and the Uniqueness Theorem
• Homogeneous Equations with Constant Coefficients

4.2. The Existence and the Uniqueness Theorem

We have looked at the existence and uniqueness theorem for nonlinear
equations in the previous lecture. However verifying the theorem espe-
cially for nonlinear equations require solving the initial value problem.
In general, finding a solution is not feasible because there is no method
of solving the differential equation that applies in all cases.

Therefore for the general case, it is necessary to adopt an indirect
approach that demonstrates the existence of a solution. The heart of
this method is the construction of a sequence of functions that con-
verges to a limit function satisfying the initial value problem, although
the members of the sequence individually do not.

We note that it is sufficient to consider the problem in which the
initial point is the origin; that is we consider the problem

(4.1) y′ = f(t, y), y(0) = 0.

If some other initial point is given, then we can always make a prelim-
inary change of variables, corresponding to a translation of the coor-
dinate axes, that will take the given point to the origin. We can thus
modify the existence and uniqueness theorem in the following way.

Theorem 4.2. If f and ∂f/∂y are continuous in a rectangle R : |t| ≤
a, |y| ≤ b, then there is some interval |t| ≤ h ≤ a in which there exists
a unique solution y = φ(t) of the initial value problem (4.1).

1
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For the method of proof, it is necessary to transform the initial value
problem (4.1) into a more convenient form. If we suppose temporarily
that there is a differentiable function y = φ(t) that satisfies the initial
value problem, then f [t, φ(t)] is a continuous function of t only. Hence
we can integrate y′ = f(t, y) from the initial point t = 0 to an arbitrary
value of t, obtaining

(4.3) φ(t) =

∫ t

0

f [s, φ(s)] ds

where we have made use of the initial condition φ(0) = 0. The above
equation is called an integral equation.

One method of showing that the integral equation (4.3) has a unique
solution is known as the method of successive approximations or
Picard’s iteration method.

We start by choosing an initial function φ0. The simplest choice is

(4.4) φ0(t) = 0

then φ0 at least satisfies the initial condition in Eq. (4.1), although
presumable not the differential equation. The next approximation φ1

is obtained by substituting φ0(s) for φ(s) in the right side of Eq. (4.3)
and calling the result of this operation φ1(t). Thus

(4.5) φ1(t) =

∫ t

0

f [s, φ0(s)] ds.

Similarly, φ2 is obtained from φ1,

(4.6) φ2(t) =

∫ t

0

f [s, φ1(s)] ds.

and, in general,

(4.7) φn+1(t) =

∫ t

0

f [s, φn(s)] ds.

In this manner we generate a sequence of functions {φn} = φ0, φ1, . . . , φn, . . . .
We look into this infinite sequence in the next example.

Example 1. Solve the initial value problem

(4.8) y′ = ty + 1, y(0) = 0

by the method of successive approximations.

Solution 1. If y = φ(t) is the solution then the corresponding integral
equation is

(4.9) φ(t) =

∫ t

0

(sφ(s) + 1) ds
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If the initial approximation is φ0(t) = 0, it follows that

(4.10) φ1(t) =

∫ t

0

(sφ0(s) + 1) ds =

∫ t

0

ds = t.

Similarly,

(4.11) φ2(t) =

∫ t

0

(sφ1(s) + 1) ds =

∫ t

0

(s2 + 1) ds =
t3

3
+ t.

and

(4.12) φ3(t) =

∫ t

0

(sφ2(s)+1) ds =

∫ t

0

(
s4

3
+s2 +1) ds =

t5

3 · 5
+
t3

3
+ t.

Equations (4.10), (4.11), and (4.12) suggest that

(4.13) φn(t) = t+
t3

3
+

t5

3 · 5
+ . . .+

t2n−1

3 · 5 · · · (2n− 1)

for each n ≥ 1, and this result can be established by mathematical
induction (Try it!).

It follows from Eq. (4.13) that φn(t) is the nth partial sum of the
infinite series

(4.14)
∞∑
k=1

t2k−1

3 · 5 · · · (2k − 1)

hence limn→∞ φn(t) exists if and only if the series (4.14) converges.
Applying the ratio test, we see that, for each t,

(4.15)

∣∣∣∣t2k+1 · 3 · 5 · · · (2k − 1)

3 · 5 · · · (2k + 1) · t2k−1

∣∣∣∣ =
t2

2k + 1
→ 0 as k →∞

Thus the series (4.14) converges for all t, and its sum φ(t) is the limit
of the sequence {φn(t)}. We can verify by direct substitution that

φ(t) =
∑∞

k=1
t2k−1

3·5···(2k−1) is a solution of the integral equation (4.14).

4.3. Homogeneous Equations with Constant Coef-
ficients

We now shift our focus to second order equations. A second order
ordinary differential equation has the form

(4.16)
d2y

dt2
= f(t, y,

dy

dt
),
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where f is some given function. Equation (4.16) is said to be linear if
the function f has the form

(4.17) f(t, y,
dy

dt
) = g(t)− p(t)dy

dt
− q(t)y,

where g, p, and q are specified functions of the independent variable t
but do not depend on y. In this case we usually rewrite Eq. (4.16) as

(4.18) y′′ + p(t)y′ + q(t)y = g(t),

Instead of Eq. (4.18), we often see the equation

(4.19) P (t)y′′ +Q(t)y′ +R(t)y = G(t).

If P (t) 6= 0, we can divide Eq. (4.19) by P (t) and thereby obtain Eq.
(4.18) with

(4.20) p(t) =
Q(t)

P (t)
, q(t) =

R(t)

P (t)
, g(t) =

G(t)

P (t)
.

If Eq. (4.16) is not of the form (4.18) or (4.19), then it is called non-
linear.

An initial value problem consists of a differential equation such as
Eq. (4.16), or (4.18) together with a pair of initial conditions

(4.21) y(t0) = y0, y′(t0) = y′0

where y0 and y′0 are given numbers prescribing values for y and y′ at
the initial point t0. Since we have a second order differential equation
therefore, roughly speaking two integrations are required to find a so-
lution and each integration introduces an arbitrary constant. Hence
we have two initial conditions.

A second order linear equation is said to be homogeneous if the
term g(t) in Eq. (4.18) is zero for all t. Otherwise the equation is called
nonhomogeneous. Therefore a homogeneous equation is of the form

(4.22) y′′ + p(t)y′ + q(t)y = 0

In this section we will concentrate our attention on equations in which
the functions P,Q and R are constants. In this case Eq. (4.19) becomes

(4.23) ay′′ + by′ + cy = 0

where a, b and c are given constants.
We now see how we can solve the above equation. We start by

seeking exponential solutions of the form y = ert, where r is a parameter
to be determined. Then it follows that y′ = rert and y′′ = r2ert. By
substituting these expressions for y, y′, and y′′ in Eq. (4.23) we obtain

(4.24) (ar2 + br + c)ert = 0
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Since ert 6= 0,

(4.25) ar2 + br + c = 0

Equation (4.25) is called the characteristic equation for the differ-
ential equation (4.23). Solving this quadratic equation gives us two
roots r1 and r2. In this section we consider the case when both r1 and
r2 are real and r1 6= r2. Then the two solutions are y1(t) = er1t and
y2(t) = er2t. Therefore

(4.26) y = c1y1(t) + c2y2(t) = c1e
r1t + c2e

r2t

is also a solution of Eq. (4.23) for arbitrary constants c1 and c2. We
look into an example below which illustrates the method.

Example 2. Find the solution of the initial value problem

(4.27) y′′ + 5y′ + 6y = 0, y(0) = 2, y′(0) = 3.

Solution 2. We assume that y = ert, and it then follows that r must
be a root of the characteristic equation

(4.28) r2 + 5r + 6 = (r + 2)(r + 3) = 0.

Thus the possible values of r are r1 = −2 and r2 = −3; the general
solution of Eq. (4.27) is

(4.29) y = c1e
−2t + c2e

−3t.

To satisfy the first initial condition, we set t = 0 and y = 2 in Eq.
(4.29); thus c1 and c2 must satisfy

(4.30) c1 + c2 = 2.

To use the second initial condition, we must first differentiate Eq.
(4.29). This gives y′ = −2c1e

−2t − 3c2e
−3t. Then, setting t = 0 and

y′ = 3, we obtain

(4.31) −2c1 − 3c2 = 3.

By solving Eqs. (4.30) and (4.31), we find that c1 = 9 and c2 = −7.
Therefore the solution of the initial value problem (4.27) is

(4.32) y = 9e−2t − 7e−3t

Note that as t→∞, the solution y → 0. In general as t increases,
the magnitude of the solution either tends to zero (when both expo-
nents are negative) or else grows rapidly (when at least one exponent
is positive).



Second Order Differential
Equations
Lecture 5
Dibyajyoti Deb

5.1. Outline of Lecture

• Solution of Linear Homogeneous Equations; the Wronskian
• Complex roots of the Characteristic Equation

5.2. Solution of Linear Homogeneous Equations; the
Wronskian

In this lecture we provide a clearer picture of the structure of the so-
lutions of all second order linear homogeneous equations using results
from previous lectures. We will be asking some basic questions about
second order linear homogeneous equations and answer them with the
help of some theorems. Before doing that, let’s define the notion of a
differential operator.

Let p and q be continuous functions on an open interval I. Then
for any twice differentiable function φ on I, we define the differential
operator L by the equation

(5.1) L[φ] = φ′′ + pφ′ + qφ.

Note that L[φ] is a function on I. The value of L[φ] at a point t is

(5.2) L[φ](t) = φ′′(t) + p(t)φ′(t) + q(t)φ(t).

In this lecture we study the second order linear homogeneous equation
L[φ](t) = 0. Since y = φ(t), we will usually write this equation in the
form

(5.3) L[y] = y′′ + p(t)y′ + q(t)y = 0.

With Eq. (5.3) we associate a set of initial conditions

(5.4) y(t0) = y0, y′(t0) = y′0,

1
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where t0 is any point in the interval I, and y0 and y′0 are given real
numbers.

The questions that we would like to ask include,

1. Does the initial value problem (5.3), (5.4) always have a solu-
tion.

2. If it has a solution then, does it have more than one.
3. Can anything be said about the form and structure of the

solutions.

The first two questions are answered with the following theorem.

Theorem 5.5. (Existence and Uniqueness Theorem)
Consider the initial value problem

(5.6) y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′0,

where p, q, and g are continuous on an open interval I that contains the
point t0. Then there is exactly one solution y = φ(t) of this problem,
and the solution exists throughout the interval I.

The theorem says three things:

• The initial value problem has a solution; in other words; a
solution exists.
• The initial value problem has only one solution; that is the

solution is unique.
• The solution φ is defined throughout the interval I where the

coefficients are continuous and is at least twice differentiable
there.

We see an application of the above theorem in the next example.

Example 1. Determine the longest interval in which the given initial
value problem is certain to have a unique twice differentiable solution.
Do not attempt to find the solution.

(5.7) (t− 1)y′′ − 3ty′ + 4y = sin t, y(−2) = 2, y′(−2) = 1

Solution 1. If the given differential equation is written in the form
of Eq. (5.6), then p(t) = −3t/(t − 1), q(t) = 4/(t − 1), and g(t) =
sin t/(t− 1). The only point of discontinuity of the coefficient is t = 1.
Therefore, the longest open interval, containing the initial point t = −2,
in which all the coefficients are continuous is −∞ < t < 1. Therefore,
this is the longest interval in which the above theorem guarantees that
the solution exists.

We look into this next theorem, which provides a way of finding
more solutions, starting from two.
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Theorem 5.8. (Principle of Superposition)
If y1 and y2 are two solutions of the differential equation,

L[y] = y′′ + p(t)y′ + q(t)y = 0,

then the linear combination c1y1 + c2y2 is also a solution for any values
of the constants c1 and c2.

Now to answer our third question regarding the form and structure
of the solutions of Eq. (5.3), we begin by examining whether the con-
stants c1 and c2 from the theorem can be chosen so as to satisfy the
initial conditions (5.4). These initial conditions require c1 and c2 to
satisfy the equations

(5.9) c1y1(t0) + c2y2(t0) = y0,

(5.10) c1y
′
1(t0) + c2y

′
2(t0) = y′0.

The determinant of the coefficients of the above system is

(5.11) W =

∣∣∣∣y1(t0) y2(t0)
y′1(t0) y′2(t0)

∣∣∣∣ = y1(t0)y
′
2(t0)− y′1(t0)y2(t0).

If W 6= 0, then Eqs. (5.9), (5.10) have a unique solution (c1, c2) re-
gardless of the values of y0 and y′0. On the other hand, if W = 0, then
the same equations have no solution unless y0 and y′0 satisfy a certain
additional condition; in this case there are infinitely many solutions.

The determinant W is call the Wronskian determinant, or sim-
ply the Wronskian, of the solutions y1 and y2. We use the next
theorem for this new result.

Theorem 5.12. Suppose that y1 and y2 are two solutions of Eq. (5.3)

L[y] = y′′ + p(t)y′ + q(t)y = 0,

and that the initial conditions (5.4)

y(t0) = y0, y
′(t0) = y′0

are assigned. Then it is always possible to choose the constants c1, c2
so that

y = c1y1(t) + c2y2(t)

satisfies the differential equation (5.3) and the initial conditions (5.4)
if and only if the Wronskian

W = y1y
′
2 − y′1y2

is not zero at t0.
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The previous theorem gives us a way of constructing infinite number
of solutions starting from two solutions y1 and y2, whose Wronskian is
not zero at the initial point t0. The next theorem finally answers our
third question about the form and structure of the solution of Eq. (5.3).

Theorem 5.13. Suppose that y1 and y2 are two solutions of Eq. (5.3)

L[y] = y′′ + p(t)y′ + q(t)y = 0,

Then the family of solutions

y = c1y1(t) + c2y2(t)

with arbitrary coefficients c1 and c2 includes every solution of Eq. (5.3)
if and only if there is a point t0 where the Wronskian of y1 and y2 is
not zero.

Theorem 5.13 states that, if and only if the Wronskian of y1 and y2
is not everywhere aero, then the linear combination c1y1+c2y2 contains
all solutions of Eq. (5.3). Is is therefore natural to call the expression

y = c1y1(t) + c2y2(t)

with arbitrary constant coefficients the general solution of Eq. (5.3).
The solutions y1 and y2 are said to form a fundamental set of solu-
tions of Eq. (5.3) if and only if their Wronskian is nonzero.

We look at an application of the above theorem in the next example.

Example 2. Show that y1(t) = t2 and y2(t) = t−1 are fundamental
solutions of the differential equation

(5.14) t2y′′ − 2y = 0

for t > 0.

Solution 2. We can verify that y1 and y2 are indeed solutions to Eq.
(5.14) by substitution. To check whether they form a pair of funda-
mental solutions, we find the Wronskian,

(5.15) W =

∣∣∣∣t2 t−1

2t −1/t2

∣∣∣∣ = t2 · −1

t2
− 2t · t−1 = −3 6= 0.

Since W 6= 0, therefore y1 and y2 form a fundamental set of solutions
and therefore every other solution is of the form c1y1+c2y2 for arbitrary
constants c1 and c2.

A new question that arises now, is whether a differential equation of
the form (5.3) always has a fundamental set of solutions. The following
theorem provides an affirmative answer to this question.
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Theorem 5.16. Consider the differential equation (5.3)

L[y] = y′′ + p(t)y′ + q(t)y = 0.

whose coefficients p and q are continuous on some open interval I.
Choose some point t0 in I. Let y1 be the solution of Eq. (5.3) that also
satisfies the initial conditions

y(t0) = 1, y′(t0) = 0,

and let y2 be the solution of Eq. (5.3) that satisfies the initial conditions

y(t0) = 0, y′(t0) = 1,

Then y1 and y2 form a fundamental solutions of Eq. (5.3).

The above theorem assures that a fundamental set of solutions al-
ways exists. In fact, a differential equation has infinitely many funda-
mental solutions.

Now let us examine further the properties of the Wronskian of two
solutions of a second order linear homogeneous differential equation.
The following theorem, gives a simple explicit formula for the Wron-
skian of any two solutions of any such equation, even if the solutions
themselves are not known.

Theorem 5.17. (Abel’ Theorem)
If y1 and y2 are solutions of the differential equation

L[y] = y′′ + p(t)y′ + q(t)y = 0,

where p and q are continuous on some open interval I, then the Wron-
skian W (y1, y2)(t) is given by

(5.18) W (y1, y2)(t) = ce
−

∫
p(t) dt

,

where c is a certain constant that depends on y1 and y2, but not on t.
Further, W (y1, y2)(t) either is zero for all t in I (if c = 0) or else is
never zero in I (if c 6= 0).

The above theorem says that the Wronskian of any two fundamental
sets of solutions of the same differential equation can differ only by a
multiplicative constant, and that the Wronskian of any fundamental
set of solutions can be determined, up to a multiplicative constant,
without solving the differential equation.

We apply the above the theorem in the next example.

Example 3. Find the general form of the Wronskian of the equation

(5.19) 2t2y′′ + 3ty′ − y = 0, t > 0
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Solution 3. We write the differential equation in the standard form
with the coefficient of y′′ equal to 1. Thus we obtain,

(5.20) y′′ +
3

2t
y′ − 1

2t2
y = 0,

so p(t) = 3/2t. Hence

(5.21) W (y1, y2)(t) = ce
−
∫

3

2t
dt

= ce
−3

2
ln t

= ct−3/2.

Equation (5.21) gives the Wronskian of any pair of solutions of the
differential equation.

5.3. Complex roots of the Characteristic Equation

In the previous lecture we learned how to solve second order linear
homogeneous equation with constant coefficients, whose characteristic
equation has different real roots.

In this section we look into the same equation

(5.22) ay′′ + by′ + cy = 0.

whose characteristic equation

(5.23) ar2 + br + c = 0.

has complex roots. Since the roots are conjugate complex numbers, we
denote them by

(5.24) r1 = λ+ iµ, r2 = λ− iµ,
where λ and µ are real. The corresponding expressions for the two
solutions are given by (Note the two solutions of equation (5.22) is
given by er1t and er2t.)

(5.25) y1(t) = e(λ+iµ)t, y2(t) = e(λ−iµ)t.

y1 and y2 can also be written as

(5.26) y1(t) = eλteiµt, y2(t) = eλte−µt,

We would like to see what it means to raise e to a complex power. The
answer is provided by an important relation known as Euler’s formula.

Euler’s Formula. eiθ = cos θ + i sin θ.
Using Euler’s formula we have y1(t) = eλt(cosµt + i sinµt), and

y2(t) = eλt(cosµt− i sinµt).
However, rather than using the complex-valued solutions y1(t) and

y2(t), let us seek instead a fundamental set of solutions of Eq. (5.22)
that are real-valued. We know that any linear combination of two
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solutions is also a solution, so let us form the linear combinations y1(t)+
y2(t) and y1(t)− y2(t). In this way we obtain

(5.27) y1(t) + y2(t) = 2eλt cosµt, y1(t) + y2(t) = 2ieλt sinµt.

Dropping the multiplicative constants 2 and 2i for convenience, we are
left with

(5.28) u(t) = eλt cosµt, v(t) = eλt sinµt.

u(t) and v(t) form a fundamental set of solutions since W (u, v) =
µe2λt 6= 0 (since µ 6= 0). Therefore the general solution of Eq. (5.22) is

(5.29) y = c1e
λt cosµt+ c2e

λt sinµt,

where c1 and c2 are arbitrary constants. We look into the next example
which uses these results.

Example 4. Solve the given initial value problem.

(5.30) y′′ + 4y′ + 5y = 0, y(0) = 1, y′(0) = 0

Solution 4. The characteristic equation is r2+4r+5 = 0 and its roots
are r = −2 ± i. Thus the general solution of the differential equation
is

(5.31) y = c1e
−2t cos t+ c2e

−2t sin t.

To apply the initial condition we set t = 0 in the the above equation;
this gives

(5.32) y(0) = c1 = 1.

For the second initial condition we must differentiate Eq. (5.31) and
then set t = 0.

(5.33) y′ = −2c1e
−2t cos t− c1e−2t sin t− 2c2e

−2t sin t+ c2e
−2t cos t.

(5.34) y′(0) = −2c1 + c2 = 0.

Substituting c1 = 1, we get c2 = 2. Using these values of c1 and c2 in
Eq. (5.31), we obtain

(5.35) y = e−2t cos t+ 2e−2t sin t.

as the solution of the initial value problem (5.30).

A good question to ask now, is how do the graph of the solution
look like. The presence of trigonometric factors in the solution makes
the graph into an oscillation. The exponential factor determines the
nature of the oscillation as follows.

• If λ > 0, then the oscillations increase with time.
• If λ < 0, then the oscillations decrease with time.
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• If λ = 0, then the oscillations stays constant with time.

Since λ = −2 in the previous example, therefore the oscillations decay
with time.



Second Order Differential
Equations
Lecture 6
Dibyajyoti Deb

6.1. Outline of Lecture

• Repeated Roots; Reduction of Order
• Nonhomogeneous Equations; Method of Undetermined Coeffi-

cients
• Variation of Parameters

6.2. Repeated Roots; Reduction of Order

In the previous lectures we looked at second order linear homogeneous
equations with constant coefficients whose characteristic equation has
either different real roots or complex roots. Now we look into the final
case, when the characteristic equation has repeated roots.

The characteristic equation of the second order linear homogeneous
equation

(6.1) ay′′ + by′ + cy = 0.

is

(6.2) ar2 + br + cr = 0.

When the above equation has repeated roots then its discriminant
b2 − 4ac is zero. Then the roots are

(6.3) r1 = r2 = −b/2a.

Both these roots yield the same solution. In this case we use the
method due to D’Alembert to find a different solution. Recall that
since y1(t) is a solution of Eq. (6.1), so is cy1 for any constant c. The
basic idea is to generalize this observation by replacing c by a function
v(t) and then trying to determine v(t) so that the product v(t)y1(t) is

1
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also a solution of Eq. (6.1). We demonstrate this method using the
next example.

Example 1. Solve the differential equation

(6.4) y′′ + 6y′ + 9y = 0.

Solution 1. The characteristic equation is

(6.5) r2 + 6r + 9 = (r + 3)2 = 0.

so r1 = r2 = −3. Therefore one solution is y1(t) = e−3t. Let y =
v(t)y1(t). We substitute y = v(t)y1(t) in Eq. (6.4) and use the resulting
equation to find v(t). Starting with

(6.6) y = v(t)y1(t) = v(t)e−3t.

we have

(6.7) y′ = v′(t)e−3t − 3v(t)e−3t.

and

(6.8) y′′ = v′′(t)e−3t − 6v′(t)e−3t + 9v(t)e−3t.

By substituting the expressions in Eqs. (6.6), (6.7), (6.8) in Eq. (6.4)
and collecting terms, we obtain

(6.9) [v′′(t)− 6v′(t) + 9v(t) + 6v′(t)− 18v(t) + 9v(t)]e−3t = 0.

which simplifies to

(6.10) v′′(t) = 0.

Therefore

(6.11) v′(t) = c1

and

(6.12) v(t) = c1t+ c2,

where c1 and c2 are arbitrary constants. Finally substituting for v(t)
in Eq. (6.6), we obtain

(6.13) y = c1te
−3t + c2e

−3t.

The second term on the right side of Eq. (6.13) corresponds to the
original solution y1(t) = e−3t, but the first term arises from a second
solution, namely y2(t) = te−3t. We can verify that these solutions form
a fundamental set by calculating their Wronskian. The Wronskian
turns out to be

(6.14) W (y1, y2)(t) = e−6t 6= 0.
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The procedure used in the above example can be generalized to
a more general equation whose characteristic equation has repeated
roots. In general for an equation

(6.15) ay′′ + by′ + cy = 0

the general solution is

(6.16) y = c1e
−bt/2a + c2te

−bt/2a.

where c1 and c2 are arbitrary constants. The geometrical behavior of
solutions is similar in this case to that when the roots are real and
different. If the exponents are either positive or negative, then the
magnitude of the solution grows or decays accordingly; the linear factor
t has little significance. However, if the repeated root is zero, then
the differential equation is y′′ = 0 and the general solution is a linear
function of t.

6.2.1. Reduction of Order

The method discussed in the earlier section is more generally applica-
ble. Suppose that we know one solution y1(t), not everywhere zero,
of

(6.17) y′′ + p(t)y′ + q(t)y = 0.

We can assume the other solution is v(t)y1(t) and apply the earlier
method to find v(t). We illustrate this in the next example.

Example 2. Given that y1(t) = t−1 is a solution of

(6.18) 2t2y′′ + 3ty′ − y = 0, t > 0,

find a fundamental set of solutions.

Solution 2. We set y = v(t)t−1, then

(6.19) y′ = v′t−1 − vt−2, y′′ = v′′t−1 − 2v′t−2 + 2vt−3.

Substituting for y, y′, and y′′ in Eq. (6.18) and collecting terms, we
obtain

(6.20) 2t2(v′′t−1 − 2v′t−2 + 2vt−3) + 3t(v′t−1 − vt−2)− vt−1

(6.21) = 2tv′′ − v′ = 0.

Therefore we see that Eq. (6.21) is a separable equation, by noting
that v′′ = (v′)′
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Separating them out makes both side integrable,

(6.22)

∫
(v′)′

v′
=

∫
1

2t
.

(6.23) ln |v′(t)| = ln |ct1/2|.

Therefore

v′(t) = ct1/2;

then

v(t) =
2

3
ct3/2 + k.

It follows that

(6.24) y =
2

3
ct1/2 + kt−1.

where c and k are arbitrary constants. The second term on the right
side of Eq. (6.24) is a multiple of y1(t) and can be dropped, but the
first term provides a new solution of y2(t) = t1/2. The Wronskian of y1
and y2 is

(6.25) W (y1, y2)(t) =
3

2
t−3/2, t > 0.

Consequently, y1 and y2 form a fundamental set of solutions of Eq.
(6.18).

6.3. Nonhomogeneous Equations; Method of Unde-
termined Coefficients

In this section we learn how to solve a special type of the general
nonhomogeneous equation, specifically equations of the form

(6.26) ay′′ + by′ + cy = g(t),

where a, b, and c are constants and g(t) is a special function of t.
Before embarking on that, we look at two results that describe the

structure of solutions of the general nonhomogeneous equation

(6.27) L[y] = y′′ + p(t)y′ + q(t)y = g(t),

where p, q, and g are given continuous functions of the open interval I.
Let

(6.28) L[y] = y′′ + p(t)y′ + q(t)y = 0,

be the homogeneous equation corresponding to Eq. (6.27).
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Theorem 6.29. If Y1 and Y2 are two solutions of the nonhomogeneous
equation (6.27), then their difference Y1 − Y2 is a solution of the cor-
responding homogeneous equation (6.28). If in addition, y1 and y2 are
a fundamental set of solutions of Eq. (6.28), then

(6.30) Y1(t)− Y2(t) = c1y1(t) + c2y2(t),

where c1 and c2 are constants.

Proof of the above theorem follows from previous lectures and sim-
ple algebra and can be found in the text book.

Theorem 6.31. The general solution of the nonhomogeneous equation
(6.27) can be written in the form

(6.32) y = φ(t) = c1y1(t) + c2y2(t) + Y (t),

where y1 and y2 are a fundamental set of solutions of the corresponding
homogeneous equation (6.28), c1 and c2 are arbitrary constants, and Y
is some specific solution of the nonhomogeneous equation (6.27).

The proof of Theorem (6.31) follows quickly from the preceding
theorem. We can think of Y1 as arbitrary solution φ and Y2 as the
specific solution Y .

Theorem (6.31) states that to solve the nonhomogeneous equation
(6.27), we must do three things:

1. Find the general solution c1y1(t)+ c2y2(t) of the corresponding
homogeneous equation. This solution is sometimes called the
complementary solution and denoted by yc(t).

2. Find some specific solution Y (t) of the nonhomogeneous equa-
tion. This solution is sometimes called the particular solution.

3. Add together the functions found in the two preceding steps.

Since we already know how to find yc(t), for homogeneous equations
with constant coefficients, we would therefore like to find a specific
solution of the nonhomogeneous equation (6.26) that we mentioned
earlier at the beginning of the section.

We do this in this section for some special functions g(t) in Eq.
(6.26) using the Method of Undetermined Coefficients. This method
requires us to make an initial assumption about the form of the partic-
ular solution Y (t), but with the coefficients left unspecified. We then
substitute the assumed expression into the equation and attempt to de-
termine the coefficients so as to satisfy that equation. We summarize
the method next.
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6.3.1. Method of Undetermined Coefficients.

To find the particular solution let us begin with nonhomogeneous equa-
tion with constant coefficients

(6.33) ay′′ + by′ + cy = g(t),

where a, b, and c are constants.

1. We make sure that the function g(t) in Eq. (6.26) belongs to
one of the classes of functions in the next table, that is, it in-
volves nothing more than exponential functions, sines, cosines,
polynomials, or sum or products of such functions.

2. If g(t) = g1(t) + · · ·+ gn(t), that is, if g(t) is a sum of n terms,
then we form n subproblems, each of which contains only one
of the terms g1(t), . . . , gn(t). The ith subproblem consists of
the equation

(6.34) ay′′ + by′ + cy = gi(t),

where i runs from 1 to n.
3. Depending on gi(t), we assume the particular solution Yi(t)

according to the next table.

gi(t) Yi(t)
Pn(t) = a0t

n + a1t
n−1 + · · ·+ an A0t

n + A1t
n−1 + · · ·+ An

Pn(t)eαt (A0t
n + A1t

n−1 + · · ·+ An)eαt

Pn(t)eαt sin βt or Pn(t)eαt cos βt (A0t
n + A1t

n−1 + · · · +
An)eαt cos βt + (B0t

n + B1t
n−1 +

· · ·+Bn)eαt sin βt

4. If there is any duplication in the assumed form of Yi(t) with
the solutions of the corresponding homogeneous equation, then
multiply Yi(t) by t, or (if necessary) by t2, so as to remove the
duplication. So for instance if we want to find a particular
solution of

(6.35) y′′ + 4y′ + 4y = 6te−2t,

our choice of Y (t) would have to be At2e−2t since te−2t (which
we find from the above table) is a solution of the corresponding
homogeneous equation of Eq. (6.35).

5. Find a particular solution Yi(t) for each subproblems. Then
the sum Y1(t) + · · · + Yn(t) is a particular solution of the full
nonhomogeneous equation (6.26).

Let us look at an example which uses the above method.
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Example 3. Find the particular solution of

(6.36) y′′ − 3y′ − 4y = 2e−t

Solution 3. The table says that our assumption for Y (t) should be
Ae−t for some constant A that is to be determined. However e−t is a
solution of the corresponding homogeneous equation of (6.36)

(6.37) y′′ − 3y′ − 4y = 0

Therefore we modify our assumption of Y (t), by multiplying it with t
and assume that the particular solution is of the form Y (t) = Ate−t.
Then

Y ′(t) = Ae−t − Ate−t, Y ′′(t) = −2Ae−t + Ate−t.

Substituting these expressions for y, y′ and y′′ in Eq. (6.36), we obtain

(6.38) (−2A− 3A)e−t + (A+ 3A− 4A)te−t = 2e−t.

Hence −5A = 2, so A = −2/5. Thus a particular solution of Eq. (6.36)
is

(6.39) Y (t) = −2

5
te−t.

6.4. Variation of Parameters

In this section we describe another method of finding a particular solu-
tion of a non-homogenoeus equation. This method is known as varia-
tion of parameters. The main advantage of variation of parameters
is that it is a general method. Without further adieu, let’s look into
the general theorem illustrating the method.

Theorem 6.40. If the functions p, q and g are continuous on an open
interval I, and if the functions y1 and y2 are a fundamental set of so-
lutions of the homogeneous equation (6.28) corresponding to the non-
homogeneous equation (6.27)

(6.41) y′′ + p(t)y′ + q(t)y = g(t),

then a particular solution of Eq. (6.27) is

(6.42) Y (t) = −y1(t)
∫ t

t0

y2(s)g(s)

W (y1, y2)(s)
ds+ y2(t)

∫ t

t0

y1(s)g(s)

W (y1, y2)(s)
ds,

where t0 is any conveniently chosen point in I. The general solution is

(6.43) y = c1y1(t) + c2y2(t) + Y (t).
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As was mentioned earlier, this method is a general method; in prin-
ciple at least, it can be applied to any equation, and it requires no
detailed assumptions about the form of the solution. On the other
hand, the method of variation of parameters requires us to evaluate
certain integrals involving the nonhomogeneous term in the differential
equation, and this may present difficulties.

We dive into an example which uses the above method.

Example 4. The given functions y1 and y2 satisfy the corresponding
homogeneous equation. Find a particular solution of the given nonho-
mogeneous equation.

(6.44) t2y′′ − 2y = 3t2 − 1, t > 0, y1(t) = t2, y2(t) = t−1

Solution 4. Writing the above equation in the standard form we have,

(6.45) y′′ − 2

t2
y = 3− 1

t2

Therefore p(t) = 0, q(t) = − 2

t2
and g(t) = 3− 1

t2
. The thress functions

are continuous whenever t 6= 0. Therefore we choose t0 = 1. We also
have W (y1, y2) = −3. By the above theorem

Y (t) = −t2
∫ t

1

1

s
· (3− 1

s2
)

−3
ds+

1

t

∫ t

1

s2 · (3− 1

s2
)

−3
ds

=
t2

3

∫ t

1

(
3

s
− 1

s3
) ds− 1

3t

∫ t

1

(3s2 − 1) ds

Integrating the above expression and using the limits we have

Y (t) =
t2

3
(3 ln t+

1

2t2
− 1

2
)− 1

3t
(t3 − t)

After simplification we have

Y (t) = t2 ln t+
1

2
− t2

2

Since t2 is already a solution of the corresponding homogeneous equa-
tion, we can ignore it at this moment. Hence the particular solution of
Eq. (6.44) is given by

(6.46) Y (t) = t2 ln t+
1

2



Higher Order Linear
Equations
Lecture 7
Dibyajyoti Deb

7.1. Outline of Lecture

• General Theory of nth Order Linear Equations.
• Homogeneous Equations with Constant Coefficients.

7.2. General Theory of nth Order Linear Equations

An nth order linear differential equation is an equation of the form

(7.1) L[y] = y(n) + p1(t)y
(n−1) + · · ·+ pn−1(t)y

′ + pn(t)y = g(t).

Since the equation involves the nthe derivative of y, therefore to obtain
a unique solution, it is necessary to specify n initial conditions

(7.2) y(t0) = y0, y′(t0) = y′0, . . . , y(n−1)(t0) = y
(n−1)
0 .

The mathematical theory associated with Eq. (7.1) is completely anal-
ogous to that for the second order linear equation. Therefore we simply
state the results for the nth order problem.

Theorem 7.3. If the functions p1, p2, . . . , pn, and g are continuous on
the open interval I, then there exists exactly one solution y = φ(t) of
the differential equation (7.1) that also satisfies the initial conditions
(7.2). The solution exists throughout the interval I.

7.2.1. The Homogeneous Equation.

As in the corresponding second order problem, we first discuss the
homogeneous equation

(7.4) L[y] = y(n) + p1(t)y
(n−1) + · · ·+ pn−1(t)y

′ + pn(t)y = 0.

1
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If the functions y1, y2, . . . , yn are solutions of Eq. (7.4), then it follows
by direct computation that the linear combination

(7.5) y = c1y1(t) + c2y2(t) + · · ·+ cnyn(t),

where c1, . . . , cn are arbitrary constants, is also a solution of Eq. (7.4).
We define the Wronskian of the solutions y1, . . . , yn by the deter-

minant

(7.6) W (y1, . . . , yn) =

∣∣∣∣∣∣∣∣∣
y1 y2 · · · yn
y′1 y′2 · · · y′n
...

...
...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣
Theorem 7.7. If the functions p1, p2, . . . , pn are continuous on the
open interval I, if the functions y1, y2, . . . , yn are solutions of Eq. (7.4),
and if W (y1, y2, . . . , yn)(t) 6= 0 for at least one point in I, then every
solution of Eq. (7.4) can be expresses as a linear combination of the
solutions y1, y2, . . . , yn.

A set of solutions y1, . . . , yn of Eq. (7.4) whose Wronskian is nonzero
is referred to as a fundamental set of solutions. Since all solutions
of Eq. (7.4) are of the form (7.5), we use the term general solution
to refer to any arbitrary linear combination of any fundamental set of
solutions of Eq. (7.4).

7.2.2. Linear Dependence and Independence.

We now explore the relationship between fundamental sets of solutions
and the concept of linear independence.

The functions f1, f2, . . . , fn are said to be linearly dependent on
an interval I if there exists a set of constants k1, k2, . . . , kn, not all zero,
such that

(7.8) k1f1(t) + k2f2(t) + · · ·+ knfn(t) = 0

for all t in I. The functions f1, . . . , fn are said to be linearly inde-
pendent on I if they are not linearly dependent there. We look into
an example.

Example 1. Determine whether the functions f1(t) = 1, f2(t) = 2 +
t, f3(t) = 3− t2, and f4(t) = 4t+ t2 are linearly independent or depen-
dent on any interval I.

Solution 1. We form the linear combination

k1f1(t)+k2f2(t)+k3f3(t)+k4f4(t) = k1+k2(2+t)+k3(3−t2)+k4(4t+t
2)

= (k1 + 2k2 + 3k3) + (k2 + 4k4)t+ (−k3 + k4)t
2.
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This expression is zero throughout an interval provided that

k1 + 2k2 + 3k3 = 0, k2 + 4k4 = 0, −k3 + k4 = 0.

These three equations, with four unknowns, have many nontrivial so-
lutions. For instance, if k4 = 1, then k3 = 1, k2 = −4, and k1 = 5.
Thus the given functions are linearly dependent on every interval.

We now present the theorem describing the relation between linear
independence and fundamental sets of solutions.

Theorem 7.9. If y1(t), . . . , yn(t) is a fundamental set of solutions of
Eq. (7.4)

(7.10) L[y] = y(n) + p1(t)y
(n−1) + · · ·+ pn−1(t)y

′ + pn(t)y = 0

on an interval I, then y1(t), . . . , yn(t) are linearly independent on I.
Conversely, if y1(t), . . . , yn(t) are linearly independent solutions of Eq.
(7.4) on I, then they form a fundamental set of solutions of I.

7.2.3. The Nonhomogeneous Equation.

Consider the nonhomogeneous equation (7.1)

(7.11) L[y] = y(n) + p1(t)y
(n−1) + · · ·+ pn−1(t)y

′ + pn(t)y = g(t).

It follows that any solution of the above equation can be written as

(7.12) y = c1y1(t) + c2y2(t) + · · ·+ cnyn(t) + Y (t),

where y1, . . . , yn is fundamental set of solutions of the corresponding
homogeneous equation and Y is some particular solution of the nonho-
mogeneous equation (7.1). The linear combination (7.12) is called the
general solution of the nonhomogeneous equation (7.1).

7.3. Homogeneous Equations with Constant Coef-
ficients

Consider the nth order linear homogeneous differential equation

(7.13) L[y] = a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = 0,

where a0, a1, . . . , an are real constants. From our knowledge of second
order linear equations with constant coefficients, it is natural to antic-
ipate that y = ert is a solution of Eq. (7.13) for suitable values of r.
Indeed,

(7.14) L[ert] = ert(a0r
n + a1r

n−1 + · · ·+ an−1r + an) = ertZ(r)

for all r, where

(7.15) Z(r) = a0r
n + a1r

n−1 + · · ·+ an−1r + an.
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The polynomial Z(r) is called the characteristic polynomial, and
the equation Z(r) = 0 is the characteristic equation of the dif-
ferential equation (7.13). A polynomial of degree n has n zeros, say
r1, r2, . . . , rn, some of which may be equal; hence we can write the
characteristic polynomial in the form

(7.16) Z(r) = a0(r − r1)(r − r2) · · · (r − rn).

Now we look at all the three possibilities of the nature of the roots.

7.3.1. Real and Unequal Roots.

If the roots of the characteristic equation are real and no two are equal,
then we have n distinct solutions er1t, er2t, . . . , ernt of Eq. (7.13). If
these functions are linearly independent(check Wronskian), then the
general solution of Eq. (7.13) is

(7.17) y = c1e
r1t + c2e

r2t + · · ·+ cne
rnt.

7.3.2. Complex Roots.

If the characteristic equation has complex roots, they must occur in
conjugate pairs, λ±iµ, since the coefficients a0, . . . , an are real numbers.
Provided that none of the roots are repeated, the general solution of Eq.
(7.13) is still of the form (7.17). Similar to the second order equation,
we can replace the complex valued solutions e(λ+iµ)t and e(λ−iµ)t by the
real-valued solutions

(7.18) eλt cosµt, eλt sinµt

7.3.3. Repeated Roots.

If the roots of the characteristic equation are not distinct, that is if
some of the roots are repeated, then we have to look at the multiplicity
of the root. For an equation of order n, if a root of Z(r) = 0, say
r = r1, has multiplicity s (where s ≤ n), then

(7.19) er1t, ter1t, t2er1t, . . . , ts−1er1t

are corresponding solutions of Eq. (7.13).
If a complex root λ+iµ is repeated s times, the complex conjugates

λ − iµ is also repeated s times. Corresponding to these 2s complex
valued solutions, we can find 2s real valued solutions by noting that
the real and imaginary parts of e(λ+iµ)t, te(λ+iµ)t, . . . , ts−1e(λ+iµ)t are also
linearly independent solutions:

eλt cosµt, eλt sinµt, teλt cosµt, teλt sinµt,

. . . , ts−1eλt cosµt, ts−1eλt sinµt.
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Let’s look into an example below.

Example 2. Find the general solution of the given differential equa-
tion.

(7.20) y′′′ − 3y′′ + 7y′ − 5y = 0.

Solution 2. The characteristic equation of the above differential equa-
tion is given by

(7.21) Z(r) = r3 − 3r2 + 7r − 5 = 0

Substituting r = 1, it can be verified that Z(1) = 0, hence r = 1 is
a root of Z(r). Since (r − 1) is a factor of Z(r), hence by the Factor
Theorem, the other factor can be found by dividing Z(r) by (r − 1).
The other factor is r2− 2r+ 5 whose roots are 1± 2i. Hence the three
roots of Eq. (7.20) are

(7.22) et, et cos 2t, et sin 2t.

Therefore the general solution of Eq. (7.20) is given by

(7.23) y = c1e
t + c2e

t cos 2t+ c3e
t sin 2t.

for arbitrary constants c1, c2, c3.
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Lecture 8
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8.1. Outline of Lecture

• The Method of Undetermined Coefficients.
• The Method of Variation of Parameters.

8.2. The Method of Undetermined Coefficients.

A particular solution Y of the nonhomogeneous nth order linear equa-
tion with constant coefficients

(8.1) L[y] = a0y
(n) + a1y

(n−1) + · · · + an−1y
′ + any = g(t)

can be obtained by the method of undetermined coefficients, provided
that g(t) is of an appropriate form. This mimics the method of unde-
termined coefficients for second order nonhomogeneous equations (See
Lecture 6). Thus if g(t) is a polynomial A0t

m +A1t
m−1 + · · ·+Am, an

exponential function eαt, a sine function sin βt, cosine function cos βt,
or a combination of them, then our assumed solution is also a suitable
combination of polynomials, exponentials, and so forth, multiplied by a
number of undetermined constants. The constants are then determined
by substituting the assumed expression into Eq. (8.1).

The main difference in using this method for higher order equations
stems from the fact that roots of the characteristic polynomial equation
may have multiplicity greater than 2. Consequently, terms proposed
for the nonhomgeneous part of the solution may need to be multiplied
by higher powers of t to make them different from terms in the solution
of the corresponding homogeneous equation. We look at this case in
the example below.

Example 1. Find the general solution of

(8.2) y′′′ − 3y′′ + 3y′ − y = 4et.

1
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Solution 1. The characteristic polynomial for the homogeneous equa-
tion corresponding is

(8.3) r3 − 3r2 + 3r − 1 = (r − 1)3,

Since the root 1 is repeated three times, therefore the general solution
of the homogeneous equation is

(8.4) yc(t) = c1e
t + c2te

t + c3t
2et.

To find a particular solution Y (t), we start by assuming that Y (t) =
Aet. However since et, tet, and t2et are all solutions of the homoge-
neous equation, we must multiply this initial choice by t3. Thus our
final assumption is that Y (t) = At3et, where A is an undetermined
coefficient.

We differentiate Y (t) three times, substitute for y and its derivative
in Eq. (8.2), and collect terms in the resulting equation. In this way
we obtain

(8.5) 6Aet = 4et.

Therefore A = 2
3

and the particular solution is

(8.6) Y (t) =
2

3
t3et.

Therefore the general solution of Eq. (8.2) is given by

(8.7) y = c1e
t + c2te

t + c3t
2et +

2

3
t3et.

8.3. The Method of Variation of Parameters.

The method of variation of parameters for determining a particular
solution of the nonhomogeneous nth order linear differential equation

(8.8) L[y] = y(n) + p1(t)y
(n−1) + · · · + pn−1(t)y

′ + pn(t)y = g(t)

is a direct extension of the method for the second order differential
equation that was covered in Lecture 6.

We look into the general theorem which illustrates the method.

Theorem 8.9. If the functions p1, . . . , pn and g are continuous on an
open interval I, and if the functions y1, y2, . . . , yn are a fundamental
set of solutions of the homogeneous equation corresponding to the non-
homogeneous equation (8.8), then a particular solution of Eq. (8.8)
is

(8.10) Y (t) =
n∑

m=1

ym(t)

∫ t

t0

g(s)Wm(s)

W (s)
ds,
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where W (t) = W (y1, y2, . . . , yn)(t), t0 is any conveniently chosen point
in I and Wm is the determinant obtained from W by replacing the mth
column by the column (0, 0, . . . , 0, 1). The general solution is

(8.11) y = c1y1(t) + c2y2(t) + . . .+ cnyn(t) + Y (t).

Let’s look into an example which uses the above theorem.

Example 2. Use the method of variation of parameters to determine
the general solution of the given differential equation.

(8.12) y′′′ − y′ = t

Solution 2. The characteristic polynomial of the corresponding ho-
mogeneous equation of Eq. (8.12) is

(8.13) r3 − r = 0

The roots of this equation are 0, 1 and −1. Therefore the solutions of
the homogeneous equation are 1, et and e−t.

(8.14) W (1, et, e−t) =

∣∣∣∣∣∣
1 et e−t

0 et −e−t
0 et e−t

∣∣∣∣∣∣ = 2

Hence y1(t) = 1, y2(t) = et and y3(t) = e−t form a fundamental set of
solution. Therefore

(8.15) W1(t) =

∣∣∣∣∣∣
0 et e−t

0 et −e−t
1 et e−t

∣∣∣∣∣∣ = −2

(8.16) W2(t) =

∣∣∣∣∣∣
1 0 e−t

0 0 −e−t
0 1 e−t

∣∣∣∣∣∣ = e−t

(8.17) W3(t) =

∣∣∣∣∣∣
1 et 0
0 et 0
0 et 1

∣∣∣∣∣∣ = et

We choose t0 = 0. Using the above theorem

(8.18) Y (t) = 1 ·
∫ t

0

s(−2)

2
ds+ et

∫ t

0

se−s

2
ds+ e−t

∫ t

0

ses

2
ds

We evaluate the last two integrals using integration by parts. This
gives

(8.19) Y (t) = −t
2

2
− 1 +

e−t

2
.
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Since 1 and e−t are already solutions of the homogeneous equation,

therefore the particular solution of Eq. (8.12) is Y (t) = −t
2

2
.

Therefore the general solution of Eq. (8.12) is

(8.20) y = c1 + c2e
t + c3e

−t − t2

2
.



The Laplace Transform
Lecture 9
Dibyajyoti Deb

9.1. Outline of Lecture

• Definition of the Laplace Transform.
• Solution of Initial Value Problems.

9.2. Definition of the Laplace Transform.

9.2.1. Improper Integrals.

We look into a brief overview of improper integrals. An improper
integral over an unbounded interval is defined as a limit of integrals
over finite intervals; thus

(9.1)

∫ ∞
a

f(t) dt = lim
A→∞

∫ A

a

f(t) dt,

where A is a positive real number. If the integral from a to A exists
for each A > a, and if the limit as A → ∞ exists, then the improper
integral is said to converge to that limiting value. Otherwise the
integral is said to diverge, or fail to exist.

We look at couple of examples.

Example 1. Let f(t) = ect, t ≥ 0, where c is a real nonzero constant.
Then

(9.2)

∫ ∞
0

ect dt = lim
A→∞

∫ A

0

ect dt = lim
A→∞

ect

c

∣∣∣∣∣
A

0

(9.3) = lim
A→∞

1

c
(ecA − 1).

1
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It follows that the improper integral converges to the value −1/c if
c < 0 and diverges if c > 0. If c = 0, then f(t) is the constant function
with value 1, and the integral again diverges.

Example 2. Let f(t) = 1/t, t ≥ 1. Then

(9.4)

∫ ∞
1

dt

t
= lim

A→∞

∫ A

1

dt

t
= lim

A→∞
lnA.

Since lim
A→∞

lnA =∞, the improper integral diverges.

9.2.2. The Laplace Transform.

Among the tools that are very useful for solving linear differential equa-
tions are integral transforms. An integral transform is a relation of
the form

(9.5) F (s) =

∫ β

α

K(s, t)f(t) dt,

where K(s, t) is a given function, called the kernel of the transforma-
tion, and the limits of integration α and β are also given. The relation
(9.5) transforms the function f into another function F , which is called
the transform of f .

The Laplace transform of f , which we will denote by L{f(t)} or by
F (s), is defined by the equation

(9.6) L{f(t)} = F (s) =

∫ ∞
0

e−stf(t) dt,

whenever the integral converges. The general idea in using the Laplace
transform to solve a differential equation is as follows:

1. Use the relation (9.6) to transform an initial value problem for
an unknown function f in the t-domain into a simpler problem
(indeed, an algebraic problem) for F in the s-domain.

2. Solve this algebraic problem to find F .
3. Recover the desired function f from its transform F .

We look into an example where we find the Laplace transform.

Example 3. Find the Laplace transform of the function f(t) = t.

Solution 1.

(9.7) L{t} =

∫ ∞
0

e−stt dt = lim
A→∞

∫ A

0

e−stt dt
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We use integration by parts,

(9.8) = lim
A→∞

[te−st
−s

∣∣∣∣∣
A

0

+
1

s

∫ A

0

e−st dt
]

= lim
A→∞

Ae−sA

−s
− 1

s2
lim
A→∞

e−st

∣∣∣∣∣
A

0

(9.9) = − 1

s2
lim
A→∞

[
e−sA − 1

]
=

1

s2
, s > 0.

Therefore

(9.10) L{t} =
1

s2
, s > 0.

An important result before we wrap up this section. The Laplace
transform is a linear operator, that is, if f1 and f2 are two functions
whose Laplace transforms exist for s > a1 and s > a2, respectively.
Then, for s greater than the maximum of a1 and a2,

(9.11) L{c1f1(t) + c2f2(t)} = c1L{f1(t)}+ c2L{f2(t)}.

9.3. Solution of Initial Value Problems.

In this section we show how the Laplace transform can be used to solve
initial value problems for linear differential equations with constant
coefficients. We present a theorem which we will use extensively in
this section

Theorem 9.12. Suppose that the functions f, f ′, . . . , f (n−1) are con-
tinuous and that f (n) is piecewise continuous on any interval 0 ≤ t ≤
A. Suppose further that there exist constants K, a and M such that
|f(t)| ≤ Keat, |f ′(t)| ≤ Keat, . . . , |f (n−1)(t)| ≤ Keat for t ≥ M . Then
L{f (n)(t)} exists for s > a and is given by

(9.13) L{f (n)(t)} = snL{f(t)}−sn−1f(0)−· · ·−sf (n−2)(0)−f (n−1)(0).

We look into an example where we solve an initial value problem
using the method of Laplace transform.

Example 4. Find the solution of the differential equatio

(9.14) y′′ + y = cos 2t.

satisfying the initial conditions

(9.15) y(0) = 1, y′(0) = 0.

Solution 2. Taking the Laplace transform of the differential equation
by using Theorem (9.12), we have

(9.16) s2L{y} − sy(0)− y′(0) + L{y} = L{cos 2t}.
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Using the table from the text book we have L{cos 2t} = s/(s2 + 4).
Therefore

(9.17) s2L{y} − s+ L{y} =
s

s2 + 4

L{y}(s2 + 1) =
s

s2 + 4
+ s

(9.18) L{y} =
s

(s2 + 4)(s2 + 1)
+

s

(s2 + 1)

Just like Laplace transform, the inverse Laplace transform is also a
linear operator. Therefore

(9.19) y = L−1{ s

(s2 + 4)(s2 + 1)
}+ L−1{ s

(s2 + 1)
}

Using partial fractions, we can write s/(s2 + 4)(s2 + 1) in the form

(9.20)
s

(s2 + 4)(s2 + 1)
=
As+B

s2 + 4
+
Cs+D

s2 + 1

Multiplying both sides of the above equation by (s2 + 4)(s2 + 1) we
have

(9.21) s = (As+B)(s2 + 1) + (Cs+D)(s2 + 4).

Expanding the right side we have

(9.22) s = s3(A+ C) + s2(B +D) + s(A+ 4C) + (B + 4D).

Equation coefficients of like powers of s, we have

(9.23) A+ C = 0, B +D = 0, A+ 4C = 1, B + 4D = 0.

Consequently, A = −1
3
, B = 0, C = 1

3
, D = 0, from which it follows

that

(9.24) y = L−1{−1

3
(

s

s2 + 4
) +

1

3
(

s

s2 + 1
)}+ L{ s

s2 + 1
}.

(9.25) = L−1{−1

3
(

s

s2 + 4
)}+ L−1{1

3
(

s

s2 + 1
)}+ L{ s

s2 + 1
}.

Using the table from the text book we have

(9.26) y = −1

3
cos 2t+

1

3
cos t+ cos t = −1

3
cos 2t+

4

3
cos t.

Therefore the solution of the given initial value problem is

(9.27) y = −1

3
cos 2t+

4

3
cos t.



The Laplace Transform
Lecture 10

Dibyajyoti Deb

10.1. Outline of Lecture

• Step Functions.
• Differential Equations with Discontinuous Forcing Functions.

10.2. Step Functions.

In this section we look at functions which have jump discontinuities.
Differential equations whose right side is a function of this type fre-
quently arise in the analysis of the flow of current in electric circuits
or the vibrations of mechanical systems. We develop some additional
properties of Laplace transform in this section and the next which will
help us in the solution of such problems.

To deal with functions with jump discontinuities we introduce a
function known as the unit step function or Heaviside function.
This function is denoted by uc and is defined for c ≥ 0 by

uc(t) =

{
0, t < c,

1, t ≥ c

We want to write a piecewise continuous function in a more ”com-
pact” manner with the help of the step function in order to find its
Laplace transform. We look into an example below where we do this.

Example 1. Consider the function

f(t) =


2, 0 ≤ t < 2,

5, 2 ≤ t < 5,

−3, 5 ≤ t < 9,

3, t ≥ 9

1
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Express f(t) in terms of uc(t).

Solution 1. We start with the function f1(t) = 2 which agrees with
f(t) on [0, 2). To produce the jump of three units (going from 2 to 5)
at t = 2, we add 3u2(t) to f1(t), obtaining

(10.1) f2(t) = 2 + 3u2(t).

which agrees with f(t) on [0, 7). The negative jump of eight units
(going from 5 to -3) at t = 5 corresponds to adding −8u5(t), which
gives

(10.2) f3(t) = 2 + 3u2(t)− 8u5(t).

Finally to get the positive jump of six units (going from -3 to 3) at
t = 9, we add 6u9(t). Thus we obtain

(10.3) f(t) = 2 + 3u2(t)− 8u5(t) + 6u9(t).

The Laplace transform of uc is easily determined

(10.4) L{uc(t)} =

∫ ∞
0

e−stuc(t) dt =

∫ c

0

e−stuc(t) dt+

∫ ∞
c

e−stuc(t) dt

(10.5) =

∫ ∞
c

e−st dt =
e−cs

s
, s > 0.

For a given function f defined for t ≥ 0, we will often want to consider
the related function g defined by

(10.6) y = g(t) =

{
0, t < c,

f(t− c), t ≥ c,

In terms of the unit step function we can write g(t) in the convenient
form

(10.7) g(t) = uc(t)f(t− c).
We look into the first theorem where we find the Laplace transform of
g(t).

Theorem 10.8. If F (s) = L{f(t)} exists for s > a ≥ 0, and if c is a
positive constant, then

(10.9) L{uc(t)f(t− c)} = e−csL{f(t)} = e−csF (s), s > a.

Conversely, if f(t) = L−1{F (s)}, then
(10.10) uc(t)f(t− c) = L−1{e−csF (s)}.

Proof. Check the text book. �

We look into an example which uses this theorem.
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Example 2. Find the inverse transform of

(10.11) G(s) =
2e−2s

s2 − 4

Solution 2.
(10.12)

L−1{G(s)} = L−1{ 2e−2s

s2 − 4
} = L−1{e−2s 2

s2 − 4
} = L−1{e−2sF (s)}

where F (s) =
2

s2 − 4
. By the converse of Theorem 10.8,

(10.13) L−1{e−2s 2

s2 − 4
} = u2(t)f(t− 2)

where f(t) = L−1{ 2

s2 − 4
} = sinh 2t.

Therefore f(t− 2) = sinh(2(t− 2)) = sinh(2t− 4). Hence

(10.14) L−1{G(s)} = u2(t) sinh(2t− 4).

We look into another theorem that contains another very useful
property of Laplace transform that is somewhat analogous to the pre-
vious theorem.

Theorem 10.15. If F (s) = L{f(t)} exists for s > a ≥ 0, and if c is
a constant, then

(10.16) L{ectf(t)} = F (s− c), s > a+ c.

Conversely, if f(t) = L−1{F (s)}, then
(10.17) ectf(t) = L−1{F (s− c)}.

Proof.

L{ectf(t)} =

∫ ∞
0

e−st · ectf(t) dt =

∫ ∞
0

e−(s−c)tf(t) dt = F (s− c).

�

We look into an example which uses the above theorem.

Example 3. Find the inverse transform of

(10.18) G(s) =
3!

(s− 2)4

Solution 3.

(10.19) G(s) =
3!

(s− 2)4
= F (s− 2)
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where F (s) =
3!

s4
.

L−1{F (s)} = L−1{ 3!

s4
} = t3 = f(t) by the converse of Theorem 10.15.

By Theorem 10.15,

(10.20) L−1{G(s)} = L−1{F (s− 2)} = e2tt3.

10.3. Differential Equations with Discontinuous Forc-
ing Functions.

In this section we turn our attention to solving differential equations
in which the nonhomogeneous term is discontinuous. We look into an
example below.

Example 4. Find the solution of the given initial value problem.
(10.21)

y′′ + y = f(t); y(0) = 0, y′(0) = 1, f(t) =

{
1, 0 ≤ t ≤ 3π

0, 3π ≤ t <∞

Solution 4. Using the step function

(10.22) f(t) = 1− u3π(t).

Therefore the equation becomes

(10.23) y′′ + y = 1− u3π(t).

(10.24) L{y′′}+ L{y} = L{1} − L{u3π(t)}

s2L{y} − sy(0)− y′(0) + L{y} =
1

s
− e−3πs

s

s2L{y} − 1 + L{y} =
1

s
− e−3πs

s

L{y}(s2 + 1) =
1

s
− e−3πs

s
+ 1

L{y} =
1

s(s2 + 1)
− e−3πs

s(s2 + 1)
+

1

s2 + 1

y = L−1{ 1

s(s2 + 1)
} − L−1{ e−3πs

s(s2 + 1)
}+ L−1{ 1

s2 + 1
}

We use partial fractions(Check Lecture Notes 9) to write

(10.25)
1

s(s2 + 1)
=

1

s
− s

s2 + 1
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Therfore

y = L−1{1

s
}−L−1{ s

s2 + 1
}−L−1{e−3πs1

s
}−L−1{e−3πs s

s2 + 1
}+L−1{ 1

s2 + 1
}

By Theorem 10.8,

(10.26) L−1{e−3πs1

s
} = u3π(t)f(t− 3π).

and

(10.27) L−1{e−3πs s

s2 + 1
} = u3π(t)g(t− 3π).

where f(t) = L−1{1

s
} = 1 and g(t) = L−1{ s

s2 + 1
} = cos t. Therefore

L−1{e−3πs1

s
} = u3π(t)f(t− 3π) = u3π(t).

and

L−1{e−3πs s

s2 + 1
} = u3π(t)g(t− 3π) = u3π(t) cos(t− 3π).

Therefore the solution to the differential equation is

(10.28) y = 1− cos t− u3π(t)− u3π(t) cos(t− 3π) + sin t.

Since cos(t− 3π) = cos t, therefore

(10.29) y = 1− cos t− u3π(t)− u3π(t) cos t+ sin t.
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11.1. Outline of Lecture

• Impulse Functions.
• The Convolution Integral.

11.2. Impulse Functions.

In this section we look at functions of impulsive nature, i.e. forces
of large magnitude that act over short time intervals. A mechanical
interpretation might be the use of a hammer to strike an object or the
striking of a baseball with a bat. We would like to have a mathematical
way of representing these types of forces.

To do this, we will introduce a new ”function”, the Dirac delta
”function”.

11.2.1. The Dirac delta

We define the Dirac delta such that it satisfies the following properties.

Definition 11.1. The Dirac delta at t = t0, denoted by δ(t − t0),
satisfies the following properties:

(1) δ(t− t0) = 0, t 6= t0,

(2)

∫ t0+τ

t0−τ
δ(t− t0) dt = 1, for any τ > 0,

(3)

∫ t0+τ

t0−τ
f(t)δ(t− t0) dt = f(c), for any τ > 0.

We can think of δ(t− t0) as having an ”infinite” value at t = t0, so
that its total energy is 1, all concentrated at that point. So the Dirac
delta can be thought of as an instantaneous impulse at t = t0.

1
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11.2.2. The Laplace transform of the Dirac delta

To solve initial value problems involving the Dirac delta, we need to
know its Laplace transform. By the third property of the Dirac delta,

(11.2) L{δ(t− t0)} =

∫ ∞
0

e−stδ(t− t0) dt = e−t0s, c > 0.

also,
(11.3)

L{f(t)δ(t− t0)} =

∫ ∞
0

e−stf(t)δ(t− t0) dt = f(t0)e
−t0s, c > 0.

We look into an example below,

Example 1. Find the solution of the given initial value problem.

(11.4) y′′ − y = −20δ(t− 3), y(0) = 1, y′(0) = 0.

Solution 1.

L{y′′} − L{y} = −20L{δ(t− 3)}
s2L{y} − sy(0)− y′(0)− L{y} = −20e−3s

s2L{y} − s− L{y} = −20e−3s

L{y}(s2 − 1) = −20e−3s + s.

L{y} =
−20e−3s

s2 − 1
+

s

s2 − 1

y = −20L−1{e−3s 1

s2 − 1
}+ L−1{ s

s2 − 1
}

By # 8 and # 13 from the table on Page 317, we have

y = −20u3(t)f(t− 3) + cosh t.

where f(t) = L−1{ 1

s2 − 1
} = sinh t.

Therefore the solution to the initial value problem is

(11.5) y = −20u3(t) sinh(t− 3) + cosh t.

11.3. The Convolution Integral.

If a Laplace transform H(s) can be written as the product of two other
transforms F (s) and G(s), then a good question to ask is whether
the same is true for their inverse Laplace transform, i.e. whether
L−1{H(s)} = L−1{F (s)}L−1{G(s)}. However, this is not the case.
In this section we look into exact relation between the inverse Laplace
transforms.
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Theorem 11.6. If F (s) = L{f(t)} and G(s) = L{g(t)} both exist for
s > a ≥ 0, then

(11.7) H(s) = F (s)G(s) = L{h(t)}, s > a,

where

(11.8) h(t) =

∫ t

0

f(t− τ)g(τ) dτ =

∫ t

0

f(τ)g(t− τ) dτ.

The function h is known as the convolution of f and g; the integral
in Eq. (11.8) are known as convolution integrals.

It is convenient to emphasize that the convolution integral can be
thought of as a ”generalized product” by writing

(11.9) h(t) = (f ? g)(t).

The convolution f ? g has many of the properties of ordinary multipli-
cation. For example, it is relatively simple to show that

(11.10) f ? g = g ? f

(11.11) f ? (g1 + g2) = f ? g1 + f ? g2

(11.12) (f ? g) ? h = f ? (g ? h)

(11.13) f ? 0 = 0 ? f = 0.

However there are other properties of ordinary multiplication that the
convolution integral does not have such as

(11.14) f ? 1 6= f.

We look into an example below.

Example 2. Find the inverse Laplace transform of

(11.15) H(s) =
a

s2(s2 + s2)
.

Solution 2. We can think of

(11.16) H(s) = F (s) ·G(s) =
1

s2
· a

s2 + a2

By # 3 and # 5 of the table on Page 317,

(11.17) f(t) = L−1{F (s)} = t, and g(t) = L−1{G(s)} = sin at.

By Theorem (11.6), the inverse transform of H(s) is

(11.18) h(t) =

∫ t

0

(t− τ) sin aτ dτ.
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Using integration by parts, we have

(11.19)

∫ t

0

(t− τ) sin aτ dτ =
at− sin at

a2
.

Therefore

(11.20) L−1{H(s)} =
at− sin at

a2
.



Series Solutions of Second
Order Linear Equations

Lecture 12
Dibyajyoti Deb

12.1. Outline of Lecture

• Review of Power Series.
• Series Solutions near an Ordinary Point, Part I.

12.2. Review of Power Series.

Our goal from the very beginning has been to find the solution of a gen-
eral second order equation without any restrictions to the coefficients
or the forcing functions. In this regard we have given a systematic
procedure for constructing solutions if the equation has constant co-
efficients. To deal with the much larger class of equations that have
variable coefficients, it is necessary to extend our search for solutions
beyond the familiar elementary functions of calculus. The principal
tool that we need is the representation of a given function by a power
series.

In this section we start by looking at some basic properties of power
series.

12.2.1. Quick review of Power Series.

1. A power series
∞∑
n=0

an(x− x0)n is said to converge at a point x

if

(12.1) lim
m→∞

m∑
n=0

an(x− x0)n

exists for that x. The series certainly converges for x = x0; it
may converge for all x, or it may converge for some values of
x and nor for others.

1
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2. The series
∞∑
n=0

an(x − x0)n is said to converge absolutely at a

point x if the series

(12.2) |
∞∑
n=0

an(x− x0)n| =
∞∑
n=0

|an||(x− x0)n|

converges. A thing to note is that absolute convergences im-
plies convergence but not the other way around.

3. One of the most useful tests for the absolute convergence of a
power series is the ratio test. If an 6= 0, and if, for a fixed
value of x,

(12.3) lim
n→∞

∣∣∣∣∣an+1(x− x0)n+1

an(x− x0)n

∣∣∣∣∣ = |x− x0| lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ = |x− x0|L,

then the power series converges absolutely at that value of x if
|x − x0|L < 1 and diverges if |x − x0|L > 1. If |x − x0|L = 1,
the test is inconclusive.

4. If the power series
∞∑
n=0

an(x − x0)
n converges for x = x1, it

converges absolutely for |x− x0| < |x1 − x0|; and if it diverges
at x = x1, it diverges for |x− x0| > |x1 − x0|.

5. There is a nonnegative number ρ, called the radius of con-

vergence, such that
∞∑
n=0

an(x − x0)n converges absolutely for

|x − x0| < ρ and diverges for |x − x0| > ρ. For a series that
converges only at x0, we define ρ to be zero; for a series that
converges for all x, we say that ρ is infinite. If ρ > 0, then the
interval |x− x0| < ρ is called the interval of convergence.

6. The value of an is given by

(12.4) an =
f (n)(x0)

n!
.

The series is called the Taylor series for the function f about
x = x0.

7. A function f that has a Taylor series expansion about x = x0

(12.5) f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n,

with radius of convergence ρ > 0, is said to be analytic at
x = x0.
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We look into couple of examples below.

Example 1. For which values of x does the power series

(12.6)
∞∑
n=1

(−1)n+1n(x− 3)n

converge?

Solution 1. We use the ratio test. We have

(12.7) lim
n→∞

∣∣∣∣∣(−1)n+2(n+ 1)(x− 3)n+1

(−1)n+1n(x− 3)n

∣∣∣∣∣ = |x−3| lim
n→∞

n+ 1

n
= |x−3|.

According to statement 3, the series converges absolutely for |x−3| < 1,
or 2 < x < 4, and diverges for |x− 3| > 1, or x > 4 and x < 2. To find
what happens at x = 2 and x = 4 we substitute these values back into
the original power series to see that both the series diverges since the
nth term does not approach zero as n→∞. Hence the series converges
in the open interval (2, 4).

Example 2. Determine the radius of convergence of the power series

(12.8)
∞∑
n=0

n

2n
xn

Solution 2. We apply the ratio test. We have

(12.9) lim
n→∞

∣∣∣∣∣(n+ 1)x(n+1)

2n+1

2n

nxn

∣∣∣∣∣ =
|x|
2

lim
n→∞

n+ 1

n
=
|x|
2
.

Thus the series converges absolutely for |x| < 2, or −2 < x < 2, and
diverges for |x| > 2 or x > 2 and x < −2. At the endpoints x = 2 and
x = −2, the series diverges since the nth term does not approach zero
as n→∞. The radius of convergence of the power series is ρ = 2.

12.3. Series Solutions near an Ordinary Point, Part
I.

In previous sections we described methods of solving second order lin-
ear differential equations with constant coefficients. We now consider
methods of solving second order linear equations when the coefficients
are functions of the independent variable. It is sufficient to consider
the homogeneous equation

(12.10) P (x)y′′ +Q(x)y′ +R(x)y = 0
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since the procedure for the corresponding nonhomogeneous equation is
similar.

For the present, suppose that P,Q and R are polynomials and that
they have no common factors. Suppose that we wish to solve Eq.
(12.10) in the neighborhood of a point x0.

A point x0 such that P (x0) 6= 0 is called an ordinary point. Since
P is continuous, it follows that there is an interval about x0 in which
P (x) is never zero. In this section we will find series solutions to Eq.
(12.10) near an ordinary point x0.

On the other hand, if P (x0) = 0, then x0 is called a singular point
of Eq. (12.10). We look into an example directly.

Example 3. Find a series solution of the equation

(12.11) y′′ − xy′ − y = 0

Solution 3. Here P (x) = 1, Q(x) = −x and R(x) = −1. Hence we
could pick out ordinary point to be x0 = 0 and find a solution near
this point. We look for a solution in the form of a power series about
x0 = 0

(12.12) y = a0 + a1x+ a2x
2 + · · ·+ anx

n + · · · =
∞∑
n=0

anx
n

and assume that the series converges in some interval |x| < ρ. Differ-
entiating Eq. (12.12) term by term yields

(12.13) y′ = a1 + 2a2x+ · · ·+ nanx
n−1 + · · · =

∞∑
n=1

nanx
n−1

(12.14)

y′′ = 2a2 + 2 · 3a3x+ · · ·+ n(n− 1)anx
n−2 + · · · =

∞∑
n=2

n(n− 1)anx
n−2

Substituting the series (12.13) and (12.14) for y and y′′ and y in (12.11)
gives

(12.15)
∞∑
n=2

n(n− 1)anx
n−2 − x

∞∑
n=1

nanx
n−1 −

∞∑
n=0

anx
n = 0

∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n
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Shifting the index of the term on the left and shifting the first term on
the right so that both n starts from zero, we have,

(12.16)
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n =

∞∑
n=0

nanx
n +

∞∑
n=0

anx
n

Note the goal here is to make the index and the degree of x on all the
three summations to be the same. We do this here by making the index
n start from zero and the degree of x being n throughout.

Equating the coefficient of xn from both sides we have,

(12.17) (n+ 2)(n+ 1)an+2 = nan + an = (n+ 1)an.

Simplifying we have our recurrence relation,

(12.18) (n+ 2)an+2 = an.

or

(12.19) an+2 =
an

n+ 2

Since an+2 is given in terms of an, the a’s are determined in steps of two.
Thus a0 determines a2, which in turn determines a4, . . .; a1 determines
a3 which in turn determines a5, . . .. For the even numbered coefficients
we have

(12.20) a2 =
a0
2
, a4 =

a2
4

=
a0

2 · 4
, a6 =

a4
6

=
a0

2 · 4 · 6
, . . .

These results suggest that in general, if n = 2k, then

(12.21) an = a2k =
a0

2 · 4 · 6 · . . . · 2k
=

a0
2kk!

, k = 1, 2, 3, . . .

Similarly, for the odd-numbered coefficients we have

(12.22) a3 =
a1
3
, a5 =

a3
5

=
a1

3 · 5
, a7 =

a5
7

=
a1

3 · 5 · 7
, . . .

Similarly these results suggest that in general, if n = 2k + 1, then

(12.23) an = a2k+1 =
a1

3 · 5 · 7 · . . . · 2k + 1
=

2kk!a1
(2k + 1)!

Substituting these coefficients into Eq. (12.12), we have

y = a0+a1x+
a0
2
x2+

a1
3
x3+

a0
222!

x4+
222!a1

5!
x5+· · ·+ a0

2nn!
x2n+

2nn!a1
(2n+ 1)!

x2n+1+· · ·

= a0

[
1 +

1

2
x2 +

1

222!
x4 + · · ·+ 1

2nn!
x2n + · · ·

]

+a1

[
x+

1

3
x3 +

222!

5!
x5 + · · ·+ 2nn!

(2n+ 1)!
x2n+1

]
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= a0

∞∑
n=0

1

2nn!
x2n + a1

∞∑
n=0

2nn!

(2n+ 1)!
x2n+1

It is easy to see by ratio test that both of these series converge for all
x (Check it!).



Series Solutions of Second
Order Linear Equations

Lecture 13
Dibyajyoti Deb

13.1. Outline of Lecture

• Series Solutions near an Ordinary Point, Part II.
• Euler Equations.

13.2. Series Solutions near an Ordinary Point, Part
II.

In the previous lecture, we considered the problem of finding solutions
of

(13.1) P (x)y′′ +Q(x)y′ +R(x)y = 0,

where P,Q, and R are polynomials, in the neighborhood of an ordinary
point x0. Assuming that Eq. (13.1) does have a solution y = φ(x) and
that φ has a Taylor series

(13.2) y = φ(x) =
∞∑
n=0

an(x− x0)n,

which converges for |x − x0| < ρ, where ρ > 0, we found an can be
determined by directly substituting the series (13.2) for y in Eq. (13.1).

We now consider how we might justify the statement that if x0 is
an ordinary point of Eq. (13.1) then there exists solutions of the form
(13.2).

Suppose there is a solution of Eq. (13.1) of the form (13.2). By
differentiating Eq. (13.2) m times and setting x equal to x0 we have

(13.3) m!am = φ(m)(x0).

Hence, to compute an from the above expression, we need to determine
φ(n)(x0) for n = 0, 1, 2, . . ..

1
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To compute φ(n)(x0), we use the original differential equation (13.1).
Since φ is a solution of Eq. (13.1), we have

(13.4) P (x)φ′′(x) +Q(x)φ′(x) +R(x)φ(x) = 0.

We can find φ′′(x) from the above equation

(13.5) φ′′(x) = −p(x)φ′(x)− q(x)φ(x),

where p(x) = Q(x)/P (x) and q(x) = R(x)/P (x). Setting x equal to x0
in Eq. (13.5) gives

(13.6) φ′′(x0) = −p(x0)φ′(x0)− q(x0)φ(x0).

From here we can find a2 since

(13.7) 2!a2 = φ′′(x0) = −p(x0)φ′(x0)− q(x0)φ(x0).

It can be easily checked that φ′(x0) = a1 and φ(x0) = a0. Therefore

(13.8) 2!a2 = φ′′(x0) = −p(x0)a1 − q(x0)a0.
To determine a3, we differentiate Eq. (13.5) and set x equal to x0,
obtaining

(13.9) 3!a3 = φ′′′(x0) = −2!p(x0)a2 − [p′(x0) + q(x0)]a1 − q′(x0)a0.
As we see from above to compute the remaining an’s we have to com-
pute infinitely many derivatives of p and q. Unfortunately, this con-
dition is too weak to ensure that we can prove the convergence of the
resulting series expansion for y = φ(x). What is needed is to assume
that the functions p and q are analytic at x0.

With this we can generalize the definitions of an ordinary point
and singular point of Eq. (13.1) as follows: if the functions p = Q/P
and q = R/P are analytic at x0, then the point x0 is said to be an
ordinary point of the differential equation (13.1); otherwise it is a
singular point.

Now we shift our focus to finding the interval of convergence of the
series solution. We look into a theorem which answers the question for
a wide class of problems.

Theorem 13.10. If x0 is an ordinary point of the differential equation
(13.1)

(13.11) P (x)y′′ +Q(x)y′ +R(x)y = 0,

that is, if p = Q/P and q = R/P are analytic at x0, then the general
solution of Eq. (13.1) is

(13.12) y =
∞∑
n=0

an(x− x0)n = a0y1(x) + a1y2(x),
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where a0 and a1 are arbitrary, and y1 and y2 are two power series
solutions that are analytic at x0. The solutions y1 and y2 form a fun-
damental set of solutions. Further, the radius of convergence for each
of the series solutions y1 and y2 is at least as large as the minimum of
the radii of convergence of the series for p and q.

We will not prove this theorem, here however, there is an easier way
to compute the lower bound of the radius of convergence of the series
solution when P,Q and R are polynomials. We present it in the next
two results.

13.2.1. Result 1

The ratio of two polynomials, say, Q/P , has a convergent power series
expansion about a point x = x0 if P (x0) 6= 0.

13.2.2. Result 2

If any factors common to Q and P have been canceled, then the radius
of convergence of the power series of Q/P about the point x0 is precisely
the distance from x0 to the nearest root of P .

We use these results in the form of an example below.

Example 1. Determine a lower bound for the radius of convergence of
the series solution about the given point x0, for the given differential
equation.

(13.13) (x2 − 2x− 3)y′′ + xy′ + 4y = 0; x0 = 4.

Solution 1. The roots of P (x) = x2 − 2x − 3 are 3 and −1. The
nearest root to x0 = 4 is the root 3 and the distance is 1. Hence the
lower bound for the radius of convergence of the series solution of the

differential equation is 1, i.e. the series solution
∞∑
n=0

an(x−4)n converges

for at least |x− 4| < 1.

13.3. Euler Equations.

In this section we will begin to consider how to solve equations of the
form

(13.14) P (x)y′′ +Q(x)y′ +R(x)y = 0,

in the neighborhood of a singular point x0, i.e. where P (x0) = 0.
Instead of looking at any general equation, we will only consider a
special type of second order equation called the Euler equation in this
lecture.
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13.3.1. Euler Equations.

A simple differential equation that has a singular point is the Euler
equation

(13.15) x2y′′ + αxy′ + βy = 0,

where α and β are real constants.
To solve a equation of this type our initial assumption of a solution

would be y = xr for any constant r. Substituting back into Eq. (13.15)
we have

x2(xr)′′ + αx(xr)′ + βxr = 0.

xr[r(r − 1) + αr + β] = 0.

We call the quadratic equation in r

(13.16) r(r − 1) + αr + β = r2 + (α− 1)r + β = 0

the characteristic equation. Based on the roots r1 and r2 of Eq. (13.16),
we have the following solutions of Eq. (13.15).

• If r1 and r2 are real and r1 6= r2, the general solution is

(13.17) y = c1|x|r1 + c2|x|r2 .
• If r1 and r2 are real and r1 = r2, the general solution is

(13.18) y = c1|x|r1 + c2|x|r1 ln |x|.
• If r1 and r2 are complex then let r1 = λ+ iµ and r2 = λ− iµ,

the general solution is

(13.19) y = c1|x|λ cos(µ ln |x|) + c2|x|λ sin(µ ln |x|).
for arbitrary constants c1 and c2 which can be determined with
initial conditions.

We present an example of an Euler equation below.

Example 2. Determine the general solution of the given differential
equation that is valid in any interval not including the singular point.

(13.20) x2y′′ − xy′ + y = 0

Solution 2. For this Euler equation α = −1 and β = 1. Hence the
characteristic equation is

(13.21) r2 − 2r + 1 = 0

whose root 1 is repeated. Hence the general solution is

(13.22) y = c1|x|+ c2|x| ln |x|.
for arbitrary constants c1 and c2.


