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1.1. Antiderivatives

1.1.1. Performance Criteria

(a) Compute the anti-derivative of a basic form (linear combina-
tions of xn for any rational n, sinx, cosx and ex) without use
of formulas or a calculator.

(b) Solve an initial value problem.

1.1.2. Indefinite Integral

You have learned about derivatives in previous chapters. A good ques-
tion to ask at this point would be the “inverse” problem related to
it.

Question. Given the derivative, can we find the original function?

Example 1.1. The derivative of a certain function is − cosx. Find
one such function.

Solution. So, let’s look at it this way. Say f(x) = − cosx = F ′(x).
Therefore, we are looking for F (x). So what could be F (x)? Forget
about the “−” sign in front of cosx for a moment here. Let’s think of
a function whose derivative is cosx.

d

dx
(sinx) = cos x.

The answer is sinx. Now what about the“−” that was in front of cosx?

− d

dx
(sinx) = − cosx.

d

dx
(− sinx) = − cosx.

1
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Thus, − sinx is one of many functions whose derivative is − cosx. Can
you think of other functions whose derivative is also − cosx?

�
The function F (x) that we found out in the previous example has

a special name. We call it the antiderivative of f(x). Let’s define it
formally.

Definition 1.2. A function F (x) is an antiderivative of f(x) on (a, b)
if F ′(x) = f(x) for all x ∈ (a, b).

Therefore, from Example 1.1 we can say that − sinx is an anti-
derivative of − cosx.

Question. Is − sinx + 1 an antiderivate of − cosx?

Answer. Yes, since

d

dx
(− sinx + 1) = − cosx.

In fact, it’s easy to see that any function F (x) of the form − sinx+C,
where C is a constant is an antiderivative of − cosx, since

d

dx
(− sinx + C) = − cosx.

�
In general, if F (x) is an antiderivate of f(x), then every other an-

tiderivative of f(x) is of the form F (x) + C for some constant C. The
process of finding an antiderivative is called integration. Instead of
using sentences like “F (x) is an antiderivative of f(x)”, we can use a
simple notation for it.

Definition 1.3. The notation∫
f(x) dx = F (x) + C,

means that F (x) is the antiderivative of f(x) i.e. F ′(x) = f(x). We
say that F (x) + C is the indefinite integral of f(x). The constant C
is called the constant of integration. You always need to include
this constant C whenever you are finding the indefinite integral of a
function.

Thus from Example 1.1,∫
− cosx dx = − sinx + C.
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1.1.3. Some common indefinite integrals

We look at some common indefinite integrals that we will be using
later,

• Power Rule:

∫
xn dx =

xn+1

n + 1
+ C, for n 6= −1.

•
∫

1

x
dx = ln |x|+ C.

•
∫

sin(ax + b) dx = −1

a
cos(ax + b) + C, for constants a 6=

0, b.

•
∫

cos(ax+b) dx =
1

a
sin(ax+b)+C, for constants a 6= 0, b.

•
∫

ekx dx =
1

k
ekx + C, for a constant k 6= 0.

• Sum Rule:

∫
(f(x) + g(x)) dx =

∫
f(x) dx +

∫
g(x) dx

• Multiples Rule:

∫
kf(x) dx = k

∫
f(x) dx for a con-

stant c.

Let’s look at few examples involving these indefinite integrals.

Example 1.4. Evaluate ∫
4e2−3x dx

Solution. By the indefinite integrals discussed above,∫
4e2−3x dx = 4e2

∫
e−3x dx = −4e2

3
e−3x + C.

�

Example 1.5. Evaluate ∫
x3 − 2x + 3

x2
dx

Solution. By the indefinite integrals discussed above,∫
x3 − 2x + 3

x2
dx =

∫
x dx−

∫
2

x
dx +

∫
3

x2
dx

=
x2

2
− 2

∫
1

x
dx + 3

∫
x−2 dx (By power and multiples rule)

=
x2

2
− 2 ln |x| − 3

x
+ C.
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�

1.1.4. Initial Value Problem

We can think of an antiderivative as a solution to the differential
equation

dy

dx
= f(x)

We won’t go too deep into differential equations in this course. There
is a separate course for that. But in short, a differential equation is an
equation involving a function and its derivatives. Solving them requires
different techniques depending on the equation itself.

For the equation above, we are solving for the function y, i.e. we
are trying to find a function y = F (x) whose derivative is f(x). As we
have seen before there are several functions which satisfies that (since
f(x) has several antiderivatives). However, if we are given an initial
condition (a given value of y for a specific value of x) then we can
find a particular solution to the above equation. Let’s look into it
through an example.

Example 1.6. Solve the initial value problem.

dy

dx
= x3, y(0) = 4.

Solution. The general antiderivative is,

y(x) =

∫
x3 dx =

1

4
x4 + C. (by the Power rule)

To solve for C we use the initial condition that is given to us. We
substitute the values of x and y and then solve for C.

y(0) =
1

4
04 + C.

4 = C.

Therefore, our solution is y(x) =
1

4
x4 + 4.

�

1.2. Approximating and Computing area

1.2.1. Performance Criteria

(a) Approximate a definite integral using a finite sum of areas of
rectangles.

(b) Use a graph to determine the value of a definite integral.
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(c) Express a definite integral as a limit of sums or vice-versa.
(d) Compute a definite integral using a limit of sums.

1.2.2. Approximating area by Rectangles

In this section we will try to approximate the area under a curve using
rectangles. Consider the graph of the simple parabola f(x) = x2. Let’s
say we want to approximate the area under this curve on the interval
[0, 4].

x

y

-2 1-1 2 3 4-3-4

16

12

8

4

y = x2

As of now, we don’t have any specific method which we can use to
find the area of this shaded region. However, we can always approxi-
mate it by means of rectangles. Look at the figure below.
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−4 −2 2 4

4

8

12

16

x

y

R4

R3

R2

R1

There are 3 rectangles that we can clearly see. However, in reality
there are 4 rectangles. There is a rectangle having (0, 0) and (1, 0) as
opposite vertices. We cannot seem to see it since it’s meshed onto the
x axis.

Another thing to note here is that the top left vertex of each rec-
tangle touches the graph of y = x2.

Approximating a region in this way is referred to as approximating
using the left end points.

Let us find the area of each rectangle separately. To calculate the
area we need to know the width and length of each rectangle. The width

of each rectangle is ∆x =
(4− 0)

4
= 1, whereas the length depends

upon the left end point of each interval on which the rectangle lies.

• Area of R1 = Width of R1× Length of R1 = 1×f(0) = 1×0 = 0.
• Area of R2 = Width of R2× Length of R2 = 1×f(1) = 1×1 = 1.
• Area of R3 = Width of R3× Length of R3 = 1×f(2) = 1×4 = 4.
• Area of R4 = Width of R4× Length of R4 = 1×f(3) = 1×9 = 9.
• Total Area = 0 + 1 + 4 + 9 = 14.

In short we can say that L4 = 14. The L stands for left end point
and 4 signifies the number of rectangles used.

Is this answer close to the exact value? The exact area of the

shaded region under the parabola from the first diagram is
64

3
= 21.33
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(How? Well, for the moment just believe me). So, there is quite a bit of
difference between the approximate area that we found out and what
the exact area is. A natural question at this point would be to find ways
to better the approximation. One way to better the approximation
would be to use more number of rectangles.

Additional Problem. When we computed L4, do you see why L4 was
less than the exact area?

For the function f(x) = x2, compute L8 and L16. Compare these
values with the exact area.

Once you do the above problem, you will see that L16 gives a better
approximation than L8 (i.e. L16 is closer to 21.33 than L8).

1.2.2.1. Right end points and Midpoints. The above calculations
can also be done by picking the right end point (see below)

−4 −2 2 4

4

8

12

16

x

y

and mid point (see below) of every interval on which the rectangle
lies.
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−4 −2 2 4

4

8

12

16

x

y

Additional Problem. Compute R4 (Area using right end points) and
M4 (Area using mid points) for the graph of y = x2 on [0, 4]. Compare
these results with L4 and the exact area.

1.2.3. A general approach using limits

As I mentioned before, we can get a better approximation of the area
under the curve if we use more number of rectangles. Let us try to find
a general expression of this area. Let us choose the left end points of
each interval for our calculation.

Example 1.7. Compute the area LN , using N rectangles under the
graph of the curve y = f(x) on the interval [a, b].

Solution. Width of each interval (and rectangle) =
Total width of the interval

Number of rectangles

=
b− a

N
= ∆x.

Length of the kth rectangle is f(a + (k − 1)∆x) (Think about it).
Therefore, total area of the region is the sum of the areas of all the
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rectangles which is

LN = ∆x× f(a) + ∆x× f(a + ∆x) + · · ·+ ∆x× f(a + (N − 1)∆x)

= ∆x(f(a) + f(a + ∆x) + · · ·+ f(a + (N − 1)∆x))

= ∆x
N−1∑
j=0

f(a + j∆x)

�

Additional Problem. Compute RN and MN for the graph of y =
f(x) on the interval [a, b] using N rectangles.

However many rectangles we pick, the above method will still give
us an approximation of the area (albeit a better one, the more number
of rectangles we choose). Is there any way to compute the exact area
using this method?

Yes, if we take infinite number of rectangles.

Example 1.8. Compute the area under the curve y = x2 on the inter-
val [0, 4] using infinite number of rectangles.

Solution. Let us use left end points for the intervals and let’s start
with N rectangles.

Width of each interval = ∆x =
4− 0

N
=

4

N
.

By using the previous formula,

LN = ∆x
N−1∑
j=0

f(a + j∆x) =
4

N

N−1∑
j=0

N−1∑
j=0

f(0 + j
4

N
)

=
4

N
f(j

4

N
)

=
4

N

N−1∑
j=0

16j2

N2

=
64

N3

N−1∑
j=0

j2

We can pull 16 and N2 out since they are constants

So what is
N−1∑
j=0

j2?

N−1∑
j=0

j2 = 02 + 12 + · · ·+ (N − 1)2 =
(N − 1)N(2N − 1)

6
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Therfore,

LN =
64

N3

N−1∑
j=0

j2 =
64

N3
· (N − 1)N(2N − 1)

6
=

32(N − 1)N(2N − 1)

3N3

If we substitute N = 4, we end up getting L4 = 14, which is what we
had before. So how do we use infinite number of rectangles? We could
try to find the limit of LN as N →∞. Hence,

Area = lim
N→∞

LN = lim
N→∞

32(N − 1)N(2N − 1)

3N3

= lim
N→∞

32(1− 1
N

)(N
N

)(2− 1
N

)

3

=
64

3
= 21.33 (Remember when I said earlier to believe me).

�

Additional Problem. Do the above problem by using right end points
and mid points for the interval. Do you end up with the same answer
as above?

Once you do the above additional problem you will see that we
could choose any of the three points (left end, right end and mid) from
our interval and all of them give the same area under the curve. In
general, they all approach the same limit

lim
N→∞

RN = lim
N→∞

LN = lim
N→∞

MN = Area under the curve.
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2.1. The Definite Integral

2.1.1. Performance Criteria

(a) Use a graph to determine the value of a definite integral.
(b) Express a definite integral as a limit of sums or vice-versa.
(c) Use the properties of definite integrals in a problem.

2.1.2. Riemann Sums

In the previous section, we discussed ways in which we can approximate
the area under the curve of a function f(x). We used the left end, right
end and mid points as our sample points. By picking an infinite number
of rectangles on the interval [a, b] we transformed the approximation
into the exact area, i.e.,

lim
N→∞

LN = lim
N→∞

RN = lim
N→∞

MN = L (The exact area)

We call L the definite integral of f(x) over [a, b]. Before we venture
more into definite integrals, let us look into a generalization of the
method that we used earlier using rectangles called Riemann sums.

When computing Riemann sums, we can relax certain requirements
that we had previously.

• Partition - The rectangles need not have equal width. We can
divide the interval [a, b], with points x0, x1, . . . , xN , such that

P : a = x0 < x1 < x2 < · · · < xN = b

where P is a partition of size N .
• Sample points - We can pick sample points

C = {c1, . . . , cN}
1
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such that ci belongs to the subinterval [xi−1, xi] for all i. We
don’t have to be restricted to just the end points and mid point.

Since we can relax the width of each rectangle, therefore the length of
each subinterval is different. The width of the ith subinterval [xi−1, xi]
is

∆xi = xi − xi−1
and the length of the ith rectangle is f(ci). The norm of P , denoted
by ||P || is the maximum of the widths ∆xi. Hence, area of the ith
rectangle is given by

Ai = f(ci)∆xi

Thus the Riemann sum is the sum

R(f, P, C) =
N∑
i=1

Ai =
N∑
i=i

f(ci)∆xi = f(c1)∆x1 + · · ·+ f(cN)∆xN

If for a specific i, f(ci) ≥ 0, then the rectangle is above the x-axis,
whereas if f(ci) < 0, then the rectangle extends below the x-axis, and
then f(ci)∆xi is the negative of the area.

Example 2.1. Calculate the Riemann sum R(f, P, C) for the given
function, partition, and choice of sample points.

f(x) = 2x+ 3, P = {−4,−1, 1, 4, 8}, C = {−3, 0, 2, 5}

Solution. Here c1 = −3, c2 = 0, c3 = 2, c4 = 5 and x0 = −4, x1 =
−1, x2 = 1, x3 = 4, x4 = 8. Therefore,
f(c1) = f(−3) = −3.
f(c2) = f(0) = 3.
f(c3) = f(2) = 7.
f(c4) = f(5) = 13.
∆x1 = x1 − x0 = 3.
∆x2 = x2 − x1 = 2.
∆x3 = x3 − x2 = 3.
∆x4 = x4 − x3 = 4.
Hence, the areas of the rectangles are
A1 = f(c1)∆x1 = −9.
A2 = f(c2)∆x2 = 6.
A3 = f(c3)∆x3 = 21.
A4 = f(c4)∆x4 = 52.
Therefore,

R(f, P, C) = A1 + A2 + A3 + A4 = −9 + 6 + 21 + 52 = 70.
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�
As before, the more number of rectangles we pick, the better ap-

proximation we have, or in the context of this section, as the norm ||P ||
tends to zero, the approximations get better.

Definition 2.2. The definite integral of f(x) over [a, b], denoted
by the integral sign, is limit of Riemann sums∫ b

a

f(x) dx = lim
||P ||→0

R(f, P, C) = lim
||P ||→0

N∑
i=i

f(ci)∆xi

When this limit exists, we say that f(x) is integrable over [a, b].

The endpoints a and b of [a, b] are called the limits of integration.

2.1.3. Signed Area

When f(x) ≥ 0, the definite integral represents the area under the
graph of y = f(x). When f(x) takes on both positive and negative
values then we can define the notion of signed area.

Signed area of a region = (Area above the x-axis)-(Area below the x-axis)

The definite integral that we have defined previously represents the
signed area of the region between the graph and the x-axis, i.e.,

∫ b

a

f(x) dx = Signed area of the region between the graph and x axis over [a, b]

Example 2.3. Calculate

∫ 5

0

(4− 2x) dx

Solution. Let us draw the graph of the function y = 4− 2x on [0, 5].
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2 4 6 8

−8

−6

−4

−2

2

4

6

x

y

+

-

There are two triangles here, one above the x-axis whose area is 1
2
×

2 × 4 = 4 and another below the x-axis whose area is 1
2
× 3 × 6 = 9.

Therefore the signed area of the entire region is 4− 9 = −5. Hence,

∫ 5

0

(4− 2x) dx = −5

�

2.1.4. Properties of the Definite Integral

• Integral of a Constant - For any constant C,

∫ b

a

C dx = C(b− a)

The function here is y = C which is a horizontal straight line
passing through C. Hence we are looking at finding the area
of the shaded region below.
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y

x
a b

C

The width of the rectangle is b− a and the height is C. Hence
the area of the shaded region is C(b− a).
• Linearity of the Definite Integral - If f and g are integrable

over [a, b], then f + g and Cf are integrable (for any constant
C), and

(a)

∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx

(b)

∫ b

a

Cf(x) dx = C

∫ b

a

f(x) dx

• Reversing the Limits - For a < b, we have

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

• Additivity for Adjacent Intervals - Let a ≤ b ≤ c, and
assume that f(x) is integrable. Then

∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx

This can be seen by noting that the area over [a, c] is the sum
of the areas over [a, b] and [b, c] in the diagram below.
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y

x
a b c

Example 2.4. Using the fact that

∫ a

0

x2 dx = a3/3, calculate

∫ 8

3

x2 dx

Solution. By the additive property above,∫ 3

0

x2 dx+

∫ 8

3

x2 dx =

∫ 8

0

x2 dx∫ 8

3

x2 dx =

∫ 8

0

x2 dx−
∫ 3

0

x2 dx

=
83

3
− 33

3
=

512

3
− 27

3
=

485

3

�
• Comparison Theorem - If f and g are integrable and g(x) ≤
f(x) for x in [a, b], then∫ b

a

g(x) dx ≤
∫ b

a

f(x) dx

It is clear from the diagram below that, the area of the region
below f(x) on [a, b] is greater than the area of the region below
g(x).
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y

x
a b

g(x)

f(x)

• Extremum theorem - Suppose that there are numbers m
(lower bound) and M (upper bound) such that m ≤ f(x) ≤M
for x in [a, b]. Then

m(b− a) ≤
∫ b

a

f(x) dx ≤M(b− a)

It is clear from the figure below that the area of the shaded

region which is

∫ b

a

f(x) dx lies between the areas of the rectan-

gle with height m and M . Note that the area of the rectangle
with height m is m(b−a) and area of the rectangle with height
M is M(b− a).
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y

x
a b

m

M

Example 2.5. Prove that

1

3
≤
∫ 6

4

1

x
dx ≤ 1

2

Solution. f(x) =
1

x
is a decreasing function on (0,∞). There-

fore, on the interval [4, 6], its maximum value (M) is
1

4
and its

minimum value (m) is
1

6
. By the Extremum theorem from

above,

1

6
· (6− 4) ≤

∫ 6

4

1

x
dx ≤ 1

4
· (6− 4)

1

3
≤
∫ 6

4

1

x
dx ≤ 1

2

�

2.2. The Fundamental Theorem of Calculus, Part I

2.2.1. Performance Criteria

(a) Use the Fundamental Theorem of Calculus to differentiate an

integral of the form

∫ x

a

f(t) dt.

(b) Use the Fundamental Theorem of Calculus to evaluate a defi-
nite integral.
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2.2.2. The Fundamental theorem of calculus, part I

As we have seen before that if F (x) is an antiderivate of f(x), then∫
f(x) dx = F (x) + C, we now have a similar result for definite inte-

grals.

Theorem 2.6. Assume that f(x) is continuous on [a, b]. If F (x)
is an antiderivative of f(x) on [a, b], then∫ b

a

f(x) dx = F (b)− F (a)

F (b) − F (a) is denoted by F (x)
∣∣∣b
a
. With this notation, the Funda-

mental theorem of calculus reads,∫ b

a

f(x) dx = F (x)
∣∣∣b
a

Example 2.7. Evaluate ∫ π/4

0

sec2 x dx

Solution. Recall that
d

dx
(tanx) = sec2 x. Therefore,∫ π/4

0

sec2 x dx = tanx
∣∣∣π/4
0

= tan(
π

4
)− tan(0) = 1− 0 = 1.

�

Example 2.8. Evaluate ∫ 1

0

1

t+ 1
dt

Solution. Recall that
d

dt
ln |t+ 1| = 1

t+ 1
. Hence,∫ 1

0

1

t+ 1
dt = ln |t+ 1|

∣∣∣1
0

= ln |1 + 1| − ln |1 + 0| = ln 2.

�
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4.1. Further Transcendental Functions

4.1.1. Performance Criteria

(a) Use substitution on integrals involving natural logarithm and
other functions.

4.1.2. Some more standard integrals

In this section we look at some common functions that we have already
seen before and see how they can be written as the integral of some
other functions. We first look at the the natural logarithm function.

4.1.2.1. Natural Logarithm. From differential calculus we know that,

d

dx
(lnx) =

1

x

Hence, by the Fundamental Theorem of Calculus Part I we have

lnx =

∫ x

1

1

t
dt for x > 0

Thus, we can define lnx to be the area under the hyperbola y = 1/t
from 1 to x.

1
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y

t
1 x

y =
1

t

Area = ln x

The area of the shaded region in the graph above is precisely lnx.

4.1.2.2. Inverse Trigonometric Functions. Just like before we can
use the derivatives of the inverse trigonometric functions to come up
with various standard integrals.

d

dx
(sin−1 x) =

1√
1− x2

,

∫
dx√

1− x2
= sin−1 x + C

d

dx
(tan−1 x) =

1

1 + x2
,

∫
dx

1 + x2
= tan−1 x + C

d

dx
(sec−1 x) =

1

|x|
√
x2 − 1

,

∫
dx

|x|
√
x2 − 1

= sec−1 x + C

d

dx
(cos−1 x) = − 1√

1− x2
,

∫
− dx√

1− x2
= cos−1 x + C

d

dx
(cot−1 x) = − 1

1 + x2
,

∫
− dx

1 + x2
= cot−1 x + C

d

dx
(csc−1 x) = − 1

|x|
√
x2 − 1

,

∫
− dx

|x|
√
x2 − 1

= csc−1 x+C

We can use these results to evaluate integrals of even more compli-
cated functions.

Example 4.1. Evaluate ∫
dx

x
√

25x2 − 1

Solution. Our goal here is to use one of new standard integrals that
we covered in this section. However we would need to have a x2 instead
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of the 25x2 in our expression before we can use the standard integrals.
Hence we simplify the expression a little bit∫

dx

x
√

25x2 − 1
=

∫
dx

x
√

(5x)2 − 1

We use the substitution

u = 5x

Therefore, du = 5 dx

dx =
1

5
du

Thus,

∫
dx

x
√

(5x)2 − 1
=

∫ 1

5
du

u

5

√
u2 − 1

=

∫
du

u
√
u2 − 1

= sec−1 u + C

= sec−1(5x) + C

�

Example 4.2. Evaluate ∫ 0

− ln 2

ex dx

1 + e2x

Solution. Here we notice that the e2x = (ex)2 and the derivative of
ex (which is also ex) is present in the expression. Therefore we use the
substitution

u = ex

du = ex dx

The new limits are

x = − ln 2⇒ u = e− ln 2 = 1/2

x = 0⇒ u = e0 = 1
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Thus, ∫ 0

− ln 2

ex dx

1 + e2x
=

∫ 1

1
2

du

1 + u2

= tan−1 u

∣∣∣∣∣
1

1
2

= tan−1(1)− tan−1(
1

2
)

= 0.7854− 0.4636 = 0.3218.

�

4.1.2.3. General exponential function. The general exponential func-
tion is of the form

f(x) = ax, a > 0, a 6= 1

Note, that when a is e we end up with the natural exponential function
ex. From differential calculus we know that

d

dx
(ax) = ax ln a.

Hence,

d

dx
(
ax

ln a
) = ax.

Therefore, ∫
ax dx =

ax

ln a
+ C

Example 4.3. Evaluate ∫
(sinx)5cosx dx

Solution. The derivative of cos x is − sinx and it is present in that
form in our expression. Thus,

u = cos x

du = − sinx dx

sinx dx = −du
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Thus, ∫
(sinx)5cosx dx =

∫
5u (−du)

= −
∫

5u du

= − 5u

ln 5
+ C

= −5cosx

ln 5
+ C

�

4.2. Area between two curves

4.2.1. Performance Criteria

(a) Use a definite integral to find the area between two curves.

4.2.2. Area between two curves

In this section we will learn how to find the area between two curves.
This is an important application of integration as this would help us
to study and interpret different types of graphs.

4.2.2.1. Integration along the x-axis. Consider the two curves be-
low.

y

x
a b

y = f(x)

y = g(x)

We would like to find the area of the shaded region between the two
curves y = f(x) and y = g(x). This can be done by
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(1) First finding the integral∫ b

a

f(x) dx

which would give the area of the shaded region below

y

x
a b

y = f(x)

(2) And then finding the integral∫ b

a

g(x) dx

which would give the area of the shaded region below

y

x
a b

y = g(x)

(3) And then subtracting the integral in (2) from the integral in
(1).

Thus,
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Area between the graphs =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx

=

∫ b

a

(f(x)− g(x)) dx

However, what if one or both of the curves lie below the x-axis.
Does the integral for computing the area between the curves change in
any way?

a b

y = f(x)

y = g(x)

+

−

The area of the above shaded region is the sum of the areas above the
x-axis and the area below the x-axis. Now the area above the x-axis is
given by the integral ∫ b

a

f(x) dx

which is a positive value since the region lies above the x-axis. The
area below the x-axis is given by

−
∫ b

a

g(x) dx
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Note the negative sign as

∫ b

a

g(x) dx is the signed area of the region

below the x-axis, therefore in order to make it positive we have to
multiply by −1. Hence,

Area between the graphs =

∫ b

a

f(x) dx + (−
∫ b

a

g(x)) dx

=

∫ b

a

(f(x)− g(x)) dx

Thus it seems that no matter where the curves lie, if f(x) ≥ g(x) on
[a, b] then,

The area between the curves =

∫ b

a

(f(x)− g(x)) dx

=

∫ b

a

(yCurve on top − yCurve on bottom) dx

Example 4.4. Find the area of the region enclosed by the curves
y = 4− x2 and y = x2 − 4.

Solution. Let us first sketch the two curves.

1 3−1−3

4

−4

x

y

y = 4− x2

y = x2 − 4
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The points of intersection of these two curves can be found by

x2 − 4 = 4− x2

2x2 = 8

x2 = 4

x = ±2

On the interval [−2, 2] the curve on top is y = 4− x2 and the curve at
the bottom is y = x2 − 4. Hence,

Area of the shaded region =

∫ 2

−2

(4− x2 − (x2 − 4)) dx

=

∫ 2

−2

(8− 2x2) dx

= (8x− 2x3

3
)

∣∣∣∣∣
2

−2

=
64

3

�

4.2.2.2. Integration along the y-axis. Suppose that we are given x
as function of y, i.e. x = f(y). What does it mean to evaluate the
integral ∫ d

c

f(y) dy

Just like our previous definite integrals, this represents the signed area,
where regions to the right of the y-axis have positive area and regions
to the left of the y-axis have negative area. Thus,

∫ d

c

g(y) dy = signed area between the graph and the y−axis for c ≤ y ≤ d
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y

x

c

d
x = f(y)

x = g(y)

Just like in the previous section,

The area between the curves =

∫ d

c

(f(y)− g(y)) dy

=

∫ d

c

(xCurve on right − xCurve on left) dy
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3.1. The Fundamental Theorem of Calculus, Part
II

3.1.1. Performance Criteria

(a) Use the Fundamental Theorem of Calculus to differentiate an

integral of the form

∫ x

a

f(t) dt.

(b) Use the Fundamental Theorem of Calculus to evaluate a defi-
nite integral.

3.1.2. The Fundamental theorem of Calculus, Part II

In this section we look at Part 2 of the Fundamental theorem of cal-
culus. Part I of the Fundamental theorem said that we could use the
antiderivative of a function to compute the definite integral. Part 2 on
the other hand turns this statement around. It tells us that we can use
the definite integral to construct the antiderivative.

In order to state Part 2 of the Fundamental theorem, we first need
to introduce the area function of f .

1
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y

t
a x

y = f(t)

The area of the shaded region above is a function of x, as we can “move”
the x while keeping a constant, across the t-axis which will result in
different areas for different values of x. Therefore,

A(x) =

∫ x

a

f(t) dt = Signed area from a to x.

Let us look at an example.

Example 3.1. Find a formula for the area function of f(x) = 2x + 6
with lower limit a = 0.

Solution. The area function of f(x) = 2x + 6 is

A(x) =

∫ x

0

(2t + 6) dt

Note that we replaced the x with t in our function. Now the function
F (t) = t2 + 6t is an antiderivative of f(t) = 2t + 6. Therefore, by Part
I of the Fundamental Theorem of Calculus we have

A(x) =

∫ x

0

(2t+6) dt = F (x)−F (0) = (x2 +6x)− (02 +6 ·0) = x2 +6x

Hence,

A(x) = x2 + 6x

�
Notice that in the previous example, A′(x) = f(x). This is true in

general which we summarize in this next theorem.
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Theorem 3.2. Assume that f(x) is continuous on an open interval
I and let a ∈ I. Then the area function

A(x) =

∫ x

a

f(t) dt.

is an antiderivative of f(x) on I i.e. A′(x) = f(x). Equivalently,

d

dx

∫ x

a

f(t) dt = f(x).

The above theorem is generally known as the Fundamental Theo-
rem of Calculus, Part II. We will be mostly using this theorem when
solving problems, however, for the sake of generality, I also present the
more general case of the same theorem.

Theorem 3.3. Assume that f(x) is continuous on an open interval
I containing the differentiable function y = g(x) and y = h(x), then

d

dx

∫ h(x)

g(x)

f(t) dt = f(h(x))h′(x)− f(g(x))g′(x).

Proof. The proof of the above theorem uses the first part of the fun-
damental theorem. By Part I, if F (x) is an antiderivative of f(x) i.e.
F ′(x) = f(x), then∫ h(x)

g(x)

f(t) dt = F (h(x))− F (g(x))

Therefore, differentiating both sides with respect to x we have,

d

dx

∫ h(x)

g(x)

f(t) dt =
d

dx
F (h(x))− d

dx
F (g(x))

= F ′(h(x)) · h′(x)− F ′(g(x)) · g′(x)

= f(h(x))h′(x)− f(g(x))g′(x) (Since F ′(x) = f(x))

�

Theorem 3.2 is a special case of Theorem 3.3. This can be seen by
taking h(x) = x and g(x) = a.

d

dx

∫ x

a

f(t) dt = f(x) · 1− f(a) · 0 = f(x).

Now, let us look at some examples.
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Example 3.4. Calculate the derivative.

d

dt

∫ t

100

sec(5x− 9) dx

Solution. Here f(x) = sec(5x− 9), therefore, by Theorem 3.2,

d

dt

∫ t

100

sec(5x− 9) dx = f(t) = sec(5t− 9)

�

Example 3.5. Calculate the derivative.

d

dx

∫ x2

√
x

tan t dt

Solution. Here f(t) = tan t, h(x) = x2 and g(x) =
√
x. Therefore, by

Theorem 3.3, we have

d

dx

∫ x2

√
x

tan t dt = f(x2) · 2x− f(
√
x) · 1

2
√
x

= tan(x2) · 2x− tan(
√
x) · 1

2
√
x

�

3.2. Substitution Method

3.2.1. Performance Criteria

(a) Compute an anti-derivative using u-substitution.
(b) Compute an anti-derivative requiring one substitution with a

trigonometric identity.
(c) Use u-substitution to change the variable of integration in a

definite integral, including changing the limits of integration.

3.2.2. Substitution using Differentials

In this section we finally look at techniques by which we can integrate
more complicated functions. Integrating a function in general is harder
than differentiating it. There are techniques in differentiation such
as the Product rule, Quotient rule and Chain rule which help us in
differentiating almost all functions, however that is not the case with
integration.
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We first look at the Substitution Method which acts as the
“Chain Rule” for integration. Let us look at this problem,∫

(2x + 5)100 dx

We could try to foil this expression and then apply the power rule to
each term separately however, that would be very tedious as it would
involve 101 terms.

Our goal here is somehow change the expression (2x + 5)100 into
an expression that we will be able to integrate using methods that we
know such as the Power rule.

Therefore let us try to “collapse” the expression (2x + 5) by using
a substitution so that we can use the power rule for integration. Let,

u = 2x + 5

Therefore, the problem now becomes

(3.6)

∫
u100 dx

But we have a problem here. We cannot integrate u100 which is a
function of u with respect to another variable (in this case x due to the
presence of dx). So, we need to change from dx to du. How do we do
that?

Here, we remind ourselves of the property of differentials. If u =
f(x), then du = f ′(x)dx. Applying this result to our substitution we
have,

du = 2dx

dx =
1

2
du

Using this in Equation 3.6 now gives us∫
u100 1

2
du =

1

2

∫
u100 du

Finally, we have “replaced” the original expression with an equivalent
function by using substitution. Now we can use the power rule for
integration.

1

2

∫
u100 du =

1

2
· u

101

101
+ C =

u101

202
+ C.

We are not done yet. The above expression is not the final answer. Re-
member that u is a variable that we introduced. The original problem
was a function of x. Therefore, we need to change our final answer and
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write it as a function of x. We just replace u with 2x+ 5 in our answer
above. ∫

(2x + 5)100 dx =
(2x + 5)101

202
+ C.

�
Let us look at another problem,

Example 3.7. Evaluate the indefinite integral.∫
x2 cos(x3 + 2) dx

Solution. As before, the goal here is to reduce the expression using
substitution into something that we can easily integrate. The key thing
to note here is that the derivative of x3 + 2 is 3x2 which is already
present in our integral (forget about the 3 for a moment). We use the
substitution

u = x3 + 2

Taking differentials on both sides gives,

du = 3x2dx

x2dx =
1

3
du

Let us now substitute these new expressions back into the original
integral.∫

x2 cos(x3 + 2) dx =

∫
(cosu)

1

3
du (Since x2dx =

1

3
du)

=
1

3

∫
cosu du

=
1

3
sinu + C

We finally replace u with x3 + 2 and we have our final answer.∫
x2 cos(x3 + 2) dx =

1

3
sin(x3 + 2) + C.

�
In both of these problems, the goal was to change the original inte-

grand (the expression that we are integrating) into something that we
can integrate easily. Hence, the key was to look for a term in the in-
tegrand whose derivative is also present in some form in the integrand
itself. Then, we can use that term for our substitution. This happened
with 2x + 5 in the first example and x3 + 2 in the second example.
The derivatives of 2x + 5 and x3 + 2 are 2 and 3x2 which were already



3.2. Substitution Method 7

present in the integrand (2 is a constant so it’s okay if it isn’t present
there as it won’t affect the substitution).

Let us look at another example.

Example 3.8. Evaluate the indefinite integral.∫
tan(lnx)

x
dx

Solution. Here, we see that we have
1

x
in our integrand. We also have

lnx. Note that the derivative of ln x is
1

x
. So we have our term that

needs to be substituted. Let,

u = lnx

Taking differentials on both sides gives,

du =
1

x
dx

Let us now substitute these new expressions back into the original
integral. ∫

tan(lnx)

x
dx =

∫
tan(u) du (Since

1

x
dx = du)

So now we have another problem. We have to integrate tanu. There
doesn’t seem to be any term that we can really use for substitution in
tanu. Therefore, let’s try to write tanu in terms of sinu and cosu.∫

tanu du =

∫
sinu

cosu
du

Now we have cosu in the integrand and also its derivative sinu. So,
we have our term for substitution. Let,

w = cosu

Taking differentials on both sides gives,

dw = − sinu du

−dw = sinu du
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Substituting these expressions back into the integral gives,∫
tanu du =

∫
sinu

cosu
du =

∫
1

w
(−dw)

= −
∫

1

w
dw

= − ln |w|+ C

= ln
1

|w|
+ C

Now, we need to write the answer in terms of x. So we “reverse sub-
stitute” the values of w and u.

ln
1

|w|
+ C = ln

1

| cosu|
+ C = ln | secu|+ C = ln | sec(lnx)|+ C.

Therefore, ∫
tan(lnx)

x
dx = ln | sec(lnx)|+ C.

�
Think about it: What would have happened if we had used w =
sinu as our substitution in the previous problem? This is a natural
question to ask since the derivative of sinu which is cosu is also present
in the integrand.

3.2.3. Substitution in Definite Integrals

Here we look at definite integrals and see how the substitution method
affect the way we solve the problem. The important thing we have to
worry about when evaluating a definite integral using the method of
substitution are its limits. In this regard we have two different ways to
approach the problem.

3.2.3.1. Method I - Changing the limits. In this method we change
the limits based on the substitution that we are using. Let us look at
an example.

Example 3.9. Evaluate the definite integral.∫ 2

1

4x + 12

(x2 + 6x + 2)2
dx

Solution. The derivative of x2+6x+2 is 2x+6 and note that 4x+12 =
2(2x + 6). Hence, we have found our term that we need to substitute.
Let,

(3.10) u = x2 + 6x + 2
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Taking differentials on both sides gives,

du = (2x + 6) dx

2du = (4x + 12) dx

Now, here comes the new part. The limits 1 and 2 are limits for the
original variable of integration which was x. We have now introduced a
new variable of integration viz. u, therefore, we need to find the limits
for u. How do we find them? Look at equation 3.10, we will use that.
Since,

u = x2 + 6x + 2, therefore

When x = 1, u = 12 + 6 · 1 + 2 = 9 and

When x = 2, u = 22 + 6 · 2 + 2 = 18.

Thus the limits of u are 9 and 18. We now continue with our substitu-
tion, ∫ 2

1

4x + 12

(x2 + 6x + 2)2
dx =

∫ 18

9

2

u2
du

= −2

u

∣∣∣∣∣
18

9

= − 2

18
− (−2

9
)

= −1

9
+

2

9
=

1

9

�

3.2.3.2. Method II - Without changing the limits. In this method
we do not change the limits. Rather we evaluate as if it were an in-
definite integral and then use the original limits in the answer. Let us
apply this method to the previous problem.

Example 3.11. Evaluate the definite integral.∫ 2

1

4x + 12

(x2 + 6x + 2)2
dx

Solution. We use the same substitution, but instead of finding the
limits for u, we keep solving the indefinite integral∫

4x + 12

(x2 + 6x + 2)2
dx =

∫
2

u2
du, where u = x2 + 6x + 2

= −2

u
+ C
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Substituting the expression of u back into the answer gives,∫
4x + 12

(x2 + 6x + 2)2
dx = − 2

x2 + 6x + 2
+ C

Now, to evaluate the definite integral we use our original limits.∫ 2

1

4x + 12

(x2 + 6x + 2)2
dx = − 2

x2 + 6x + 2

∣∣∣∣∣
2

1

= − 2

22 + 6 · 2 + 2
− (− 2

12 + 6 · 1 + 2
)

= − 2

18
− (−2

9
)

= −1

9
+

2

9
=

1

9
It’s not a coincidence that we end up with the same answer in both the
methods.

�
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9.1. Improper Integrals

9.1.1. Performance Criteria

(a) Evaluate an improper integral of the form

∫ ∞
a

f(x) dx.

9.1.2. Improper Integrals

The definite integrals that we have looked at so far have all had finite
limits. The integrand was also continuous on this interval of integra-
tion. Now, what happens if either one or both limits are infinite or
the integrand is not continuous on the interval of convergence? We
call these types of integrals improper integrals. We deal first with
improper integrals over infinite intervals where one or both endpoints
may be infinite. Examples of such integrals are∫ a

−∞
f(x) dx,

∫ ∞
a

f(x) dx,

∫ ∞
−∞

f(x) dx

Now, how do we evaluate these integrals? The following result shows
us a way.

Definition 9.1. The improper integral of f(x) over [a,∞) is
defined as the following limit (if it exists),∫ ∞

a

f(x) dx = lim
R→∞

∫ R

a

f(x) dx

We say the above improper integral converges if the limit exists
(and is finite) and that it diverges if the limit does not exist.

1
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We can similarly define∫ a

−∞
f(x) dx = lim

R→−∞

∫ a

R

f(x) dx

and for a doubly infinite integral we can define it as a sum∫ ∞
−∞

f(x) dx =

∫ 0

−∞
f(x) dx+

∫ ∞
0

f(x) dx

The above doubly infinite integral exists if both the integrals on the
right converges.

Example 9.2. Determine whether the improper integral converges and
if so, evaluate it. ∫ ∞

4

e−3x dx

Solution. We rewrite the integral as∫ ∞
4

e−3x dx = lim
R→∞

∫ R

4

e−3x dx

Now we evaluate ∫
e−3x dx

as if it were a regular definite integral. Therefore,∫ R

4

e−3x dx =
e−3x

−3

∣∣∣R
4

= −e
−3R

3
+
e−12

3

Now let us find the limit.

lim
R→∞

∫ R

4

e−3x dx = lim
R→∞

(
− e−3R

3
+
e−12

3

)
= lim

R→∞

(
− 1

3e3R
+
e−12

3

)
Now as R→∞, the expression 1/e3R → 0. Hence,

lim
R→∞

(
− 1

3e3R
+
e−12

3

)
=
e−12

3

Therefore, ∫ ∞
4

e−3x dx =
e−12

3

and hence the integral converges.
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�
Let’s look at another example.

Example 9.3. Determine whether the improper integral converges and
if so, evaluate it. ∫ 0

−∞
xe−x

2

dx

Solution. We rewrite the integral as∫ 0

−∞
xe−x

2

dx = lim
R→−∞

∫ 0

R

xe−x
2

dx

Now we evaluate ∫ 0

R

xe−x
2

dx

as if it were a regular definite integral. We use substitution in this
case (Note that the derivative of x2 is 2x, and x is also present in the
function). Using u = x2 as our substitution we have,

du = 2x dx
1

2
du = x dx

The limits then change to R2 and 0 (since u = x2). The integral then
becomes,

1

2

∫ 0

R2

e−u du =
1

2
(−e−u)

∣∣∣0
R2

= −1

2
(1− e−R2

)

Now, let us find the limit.

lim
R→−∞

−1

2
(1− e−R2

) = −1

2
(This is because e−R

2 → 0 as R→ −∞).

Thus the integral ∫ 0

−∞
xe−x

2

dx converges.

and ∫ 0

−∞
xe−x

2

dx = −1

2
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�
Now. let us look at a different type of improper integral. An integral

over a finite interval [a, b] is improper if the integrand becomes infinite
at one or both of the endpoints of the interval. We evaluate these
integrals the same as before, by evaluating a limit.

Definition 9.4. If f(x) is continuous on [a, b) but discontinuous
at x = b, we define∫ b

a

f(x) dx = lim
R→b−

∫ R

a

f(x) dx

Similarly, if f(x) is continuous on (a, b] but discontinuous at
x = a, then ∫ b

a

f(x) dx = lim
R→a+

∫ b

R

f(x) dx

The above integrals converges if the limits exist and diverges oth-
erwise.

Example 9.5. Evaluate the integral

∫ 4

2

dx

(x− 2)1/3

Solution. The integrand here is discontinuous at the limit point 2.
Thus,

∫ 4

2

dx

(x+ 2)1/3
= lim

R→2+

∫ 4

R

dx

(x− 2)1/3

Now we evaluate ∫ 4

R

dx

(x− 2)1/3

as if it were a regular definite integral. We use substitution in this case.
Let u = x − 2. Therefore, du = dx. The limits in this case become 2
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and R− 2 (as u = x− 2). Thus the integral becomes,∫ 4

R

dx

(x− 2)1/3
=

∫ 2

R−2

du

u1/3

=
3u2/3

2

∣∣∣2
R−2

=
3 · 22/3

2
− 3 · (R− 2)2/3

2

=
3

21/3
− 3 · (R− 2)2/3

2

Now we apply the limit,

lim
R→2+

∫ 4

R

dx

(x− 2)1/3
= lim

R→2+

( 3

21/3
− 3 · (R− 2)2/3

2

)
=

3

21/3

�

9.2. Arc Length and Surface Area

9.2.1. Performance Criteria

(a) Set up an integral representing the length of a curve, given the
formula.

(b) Set up an integral representing the area of a surface of revolu-
tion.

9.2.2. Arc Length

In this section we see how we can apply integrals to compute the length
of a curve (which we call arc length). The goal is to approximate the
length of the arc using small segments of straight lines. We skip the
details here and look at the formula directly.

Theorem 9.6. Assume that f ′(x) exists and is continuous on [a, b].
Then the arc length s of y = f(x) over [a, b] is equal to

s =

∫ b

a

√
1 + [f ′(x)]2 dx

Example 9.7. Find the arc length of y = 1
12
x3 + x−1 for 1 ≤ x ≤ 2.
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Solution. Here f(x) = 1
12
x3 + x−1. Therefore, f ′(x) = x2

4
− 1

x2 .
Hence,

1 + [f ′(x)]2 = 1 +
(x2

4
− 1

x2

)2
= 1 +

x4

16
− 1

2
+

1

x4

=
x4

16
+

1

2
+

1

x4

=
(x2

4
+

1

x2

)2
Thus,

s =

∫ 2

1

√
1 + [f ′(x)]2 dx =

∫ 2

1

(x2
4

+
1

x2

)
dx

=
x3

12
− 1

x

∣∣∣2
1

=
( 8

12
− 1

2

)
−
( 1

12
− 1
)

=
13

12

�

9.2.3. Area of a Surface of Revolution

We have seen earlier that if we rotate a curve around a vertical or
horizontal line, we end up with a surface. In this section we see how
we can apply integrals to compute the area of this surface of revolution.

Theorem 9.8. Assume that f(x) ≥ 0 and that f ′(x) exists and is
continuous on [a, b]. The surface area S of the surface obtained by
rotating the graph of f(x) about the x-axis for a ≤ x ≤ b is equal
to

S = 2π

∫ b

a

f(x)
√

1 + f ′(x)2 dx

Example 9.9. Compute the surface area of revolution about the x-axis
of the curve y = x3 over the interval [0, 2].

Solution. Here f(x) = x3. Therefore, f ′(x) = 3x2. Hence,√
1 + f ′(x)2 =

√
1 + 9x4
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Therefore,

S = 2π

∫ 2

0

f(x)
√

1 + f ′(x)2 dx = 2π

∫ 2

0

x3
√

1 + 9x4 dx

We use the substitution u = 1 + 9x4 here. Therefore,

du = 36x3 dx
1

36
du = x3 dx

The limits in this case become

When x = 0, u = 1 + 9 · 04 = 1.

When x = 2, u = 1 + 9 · 24 = 145.

The integral then becomes,

2π

∫ 2

0

x3
√

1 + 9x4 dx =
2π

36

∫ 145

1

√
u du

=
π

9
· u

3/2

3

∣∣∣145
1

=
π

27
(1453/2 − 1)

�
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7.1. Techniques of Integration: Integration by Parts

7.1.1. Performance Criteria

(a) Compute an anti-derivative using integration by parts.

7.1.2. Integration by Parts

As I have mentioned before, we need to use different methods to inte-
grate different types of functions, unlike finding their derivatives which
relies on very few techniques (like Product, Quotient or Chain Rule).

In this section we look at probably the most important technique
to integrate certain types of functions. It is called Integration by
Parts and it is analogous to the Product Rule for derivatives that you
seen earlier. It is in fact derived from the Product Rule.

If u and v are functions of x, then by the Product Rule,

(uv)′ = uv′ + u′v

Integrating both sides with respect to x we have,

uv =

∫
uv′ dx +

∫
u′v dx∫

uv′ dx = uv −
∫

u′v dx

1
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Thus,

Integration by Parts Formula : If u and v are functions of x,
then,

(7.1)

∫
uv′ dx = uv −

∫
u′v dx

Since we are integrating a product uv′, hence the reason why inte-
gration by parts is analogous to the product rule.

The important step in this method is making the right choice for u
and v′ such that finding u′ (which we find by differentiating u) and v
(which we find by integrating v′) and integrating u′v is easy enough.

Example 7.2. Evaluate ∫
xex dx

Solution. We have to choose u and v′, such that finding u′ and v and
integrating u′v is easy enough as I mentioned before. In this regard
having u = x and v′ = ex is the right choice as u′ = 1, v = ex and
integrating u′v = ex is easy. Thus,

u = x ⇒ u′ = 1 (by differentiating u)

v′ = ex ⇒ v = ex (by integrating v′)

Thus by Equation 7.1,∫
xex = xex −

∫
ex dx

= xex − ex + C

�
In the previous example, what would have happened if we had

chosen u = ex and v′ = x ? By differentiating u and integrating v′

we have, u′ = ex and v = x2/2. However, it is not so easy to integrate

uv′ =
exx2

2
. Thus, u = ex and v′ = x turn out to be bad choices for u

and v.

Example 7.3. Evaluate ∫
lnx dx
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Solution. The function lnx doesn’t seem to be a product of two func-
tions, however we can think of lnx as lnx · 1. Hence we can choose
u = lnx and v = 1. Then,

u = lnx ⇒ u′ =
1

x
(by differentiating u)

v′ = 1 ⇒ v = x (by integrating v′)

Thus by Equation 7.1,∫
lnx dx = x lnx−

∫
1

x
· x dx

= x lnx−
∫

dx

= x lnx− x + C

�

Example 7.4. Evaluate ∫
x2ex dx

Solution. Here we choose u = x2 and v′ = ex, then

u = x2 ⇒ u′ = 2x (by differentiating u)

v′ = ex ⇒ v = ex (by integrating v′)

This is the right choice for u and v′ because when we find u′ by differ-
entiating then the degree of x keeps decreasing as we apply the power
rule to x2. By Equation 7.1 we have,∫

x2ex = x2ex −
∫

2xex dx

= x2ex − 2

∫
xex dx

To evaluate

∫
xex dx, we would have to use untegration by parts again

with u = x and v′ = ex. However, since we have already evaluated this
integral in Example 7.2, therefore, we can use that result. Hence,∫

x2ex dx = x2ex − 2(xex − ex) + C

= x2ex − 2xex + ex + C

�
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Example 7.5. Evaluate ∫
ex sinx dx

Solution. We choose u = ex and v′ = sinx. Then,

u = ex ⇒ u′ = ex (by differentiating u)

v′ = sinx ⇒ v = − cosx (by integrating v′)

By Equation 7.1 we have,∫
ex sinx dx = −ex cosx−

∫
ex(− cosx) dx

= −ex cosx +

∫
ex cosx dx

Now it seems like we have to integrate ex cosx. For this we choose
u = ex and v′ = cosx. Then,

u = ex ⇒ u′ = ex (by differentiating u)

v′ = cosx ⇒ v = sinx (by integrating v′)

By Equation 7.1 we have,∫
ex sinx dx = −ex cosx + ex sinx−

∫
ex sinx dx

It seems like we are moving in a circle now since we end with the
integration of ex sinx on the right side too. However if we let I =∫

ex sinx dx, then

I = −ex cosx + ex sinx− I

2I = ex(sinx− cosx)

I =
ex(sinx− cosx)

2

Thus, ∫
ex sinx dx =

ex(sinx− cosx)

2
+ C

�
Now, what happens when we have a definite integral? Does inte-

gration by parts affect the way we evaluate a definite integral?
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Integration by Parts for definite integrals

(7.6)

∫ b

a

uv′ dx = uv

∣∣∣∣∣
b

a

−
∫ b

a

u′v dx

Example 7.7. Evaluate ∫ 3

0

xe4x dx

Solution. We choose u = x and v′ = e4x. Then,

u = x ⇒ u′ = 1 (by differentiating u)

v′ = e4x ⇒ v =
e4x

4
(by integrating v′)

Therefore, by Equation 7.6 we have,∫ 3

0

xe4x dx = x · e
4x

4

∣∣∣∣∣
3

0

−
∫ 3

0

e4x

4
dx

Using the substitution u = 4x,∫
e4x

4
dx =

e4x

16
+ C

Hence, ∫ 3

0

xe4x dx =
(

3 · e
12

4
− 0 · e

0

4

)
− e4x

16

∣∣∣∣∣
3

0

=
3e12

4
−
(e12

16
− e0

16

)
=

3e12

4
− e12

16
+

1

16
=

11e12

16
+

1

16

�
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7.2. Trigonometric Integrals

7.2.1. Performance Criteria

(a) Compute the anti-derivative of functions involving powers of
trigonometric functions.

7.2.2. Trigonometric Integrals

In this section we look at methods by which we can integrate functions
which are powers of trigonometric functions. We will be looking at
powers of sine, cosine, tangent and secant. Powers of cotangent and
cosecant can integrated using the same methods for tangent and secant.

7.2.2.1. Powers of Sine and Cosine.

(1) Powers of Sine - We look at methods for evaluating∫
sinn x dx

for a positive integer n.
To evaluate integrals of this form we use the reduction for-

mula for Sine.

Reduction formula for Sine: For a positive integer n,∫
sinn x dx = − 1

n
sinn−1 x cosx +

n− 1

n

∫
sinn−2 x dx

If we denote

∫
sinn x dx by In, then the above formula can

be rewritten as

In = − 1

n
sinn−1 x cosx +

n− 1

n
In−2

Example 7.8. Evaluate∫
sin5 x dx

Solution. Here we have to find I5. Using the reduction for-
mula for Sine we have,

(7.9) I5 = −1

5
sin4 x cosx +

4

5
I3
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which means we have to find I3 now. By the same reduction
formula,

(7.10) I3 = −1

3
sin2 x cosx +

2

3
I1

So we have to find I1 now. I1 is the “base case” and it can be
computed by

(7.11) I1 =

∫
sinx dx = − cosx + C

Using this in 7.10 we have,

I3 = −1

3
sin2 x cosx +

2

3
(− cosx) + C

Using this in 7.9 we have,

I5 = −1

5
sin4 x cosx +

4

5
(−1

3
sin2 x cosx +

2

3
(− cosx)) + C

= −1

5
sin4 x cosx− 4

15
sin2 x cosx− 8

15
cosx + C

�
(2) Powers of Cosine - We look at methods for evaluating∫

cosn x dx

for a positive integer n.
To evaluate integrals of this form we use the reduction for-

mula for Cosine.

Reduction formula for Cosine: For a positive integer
n,∫

cosn x dx =
1

n
cosn−1 x sinx +

n− 1

n

∫
cosn−2 x dx

If we denote

∫
cosn x dx by In, then the above formula can

be rewritten as

In =
1

n
cosn−1 x sinx +

n− 1

n
In−2

Example 7.12. Evaluate∫
cos6 x dx
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Solution. Here we have to find I6. Using the reduction for-
mula for Sine we have,

(7.13) I6 =
1

6
cos5 x sinx +

5

6
I4

which means we have to find I4 now. By the same reduction
formula,

(7.14) I4 =
1

4
cos3 x sinx +

3

4
I2

So we have to find I2 now. I2 is the “base case” and it can be
computed by

(7.15) I2 =

∫
cos2 x dx

Now,

cos2 x =
1 + cos 2x

2

by the double angle formula for cosine. Hence,∫
cos2 x dx =

∫
1 + cos 2x

2
dx

=

∫
(
1

2
+

cos 2x

2
) dx

=
x

2
+

sin 2x

4
+ C

Using this in 7.14 we have,

I4 =
1

4
cos3 x sinx +

3

4
(
x

2
+

sin 2x

4
) + C

=
1

4
cos3 x sinx +

3x

8
+

3 sin 2x

16
+ C

Using this in 7.13 we have,

I6 =
1

6
cos5 x sinx +

5

6
(
1

4
cos3 x sinx +

3x

8
+

3 sin 2x

16
) + C

=
1

6
cos5 x sinx +

5

24
cos3 x sinx +

5x

16
+

5 sin 2x

32
+ C

�
As is evidenced from the previous two examples, the base

case turns out to be either I1 or I2 for both the trigonometric
functions. If it’s I2, then we have to integrate either sin2 x or
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cos2 x. We have already seen how to integrate cos2 x. sin2 x
can be integrated the same way.

I2 =

∫
sin2 x dx

Now,

sin2 x =
1− cos 2x

2
by the double angle formula for sine. Hence,∫

sin2 x dx =

∫
1− cos 2x

2
dx

=

∫
(
1

2
− cos 2x

2
) dx

=
x

2
− sin 2x

4
+ C

7.2.2.2. Products of powers of sine and cosine. Here we look at
methods for evaluating ∫

sinm x cosn x dx

for positive integers m and n.

(1) At least one of m, n are odd - Let us say m is odd (the
same method could be applied if n is odd or if both m and n
are odd). In this case we write the integral as∫

sinm x cosn x dx =

∫
sinx sinm−1 x cosn x dx

Now since m is odd, therefore m− 1 is even and hence∫
sinx sinm−1 x cosn x dx =

∫
sinx (sin2 x)

m−1
2 x cosn x dx

=

∫
sinx(1− cos2 x)

m−1
2 x cosn x dx

Now we use the substitution u = cosx and then du = − sinx dx,
and therefore,∫
sinx(1− cos2 x)

m−1
2 x cosn x dx = −

∫
(1− u2)

m−1
2 un du

Now the above integral can be technically evaluated by ex-
panding (1 − u2)

m−1
2 and then multiplying with un and then

using the power rule for each term. Let us look at an example
of this.
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Example 7.16. Evaluate∫
sin5 x cos6 x dx

Solution. Here we rewrite the integral as∫
sin5 x cos6 x dx =

∫
sinx sin4 x cos6 x dx

Now since sin2 x = 1− cos2 x, therefore,∫
sinx sin4 x cos6 x dx =

∫
sinx(1− cos2 x)2 cos6 x dx

Using the substitution u = cos x, we have du = − sinx dx.
Therefore,∫
sinx(1− cos2 x)2 cos6 x dx = −

∫
(1− u2)2u6 du

= −
∫

(1− 2u2 + u4)u6 du

= −
∫

(u6 − 2u8 + u10) du

= −u7

7
+

2u9

9
− u11

11
+ C

Substituting u back gives,∫
sin5 x cos6 x dx = −cos7 x

7
+

2 cos9 x

9
− cos11 x

11
+ C

�
(2) Both m, n are even - Let m ≤ n (the same method applies

when n ≤ m). In this case we write the integral as,∫
sinm x cosn x dx =

∫
(sin2 x)

m
2 cosn x dx

Now since sin2 x = 1− cos2 x, therefore,∫
(sin2 x)

m
2 cosn x dx =

∫
(1− cos2 x)

m
2 cosn x dx

Now the above integral can be evaluated by expanding (1 −
cos2 x)

m
2 and then multiplying with cosn x and then using the

reduction formula for cosine for each term. Let us look at an
example of this.
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Example 7.17. Evaluate∫
sin4 x cos6 x dx

Solution. We rewrite the integral as∫
sin4 x cos6 x dx =

∫
(sin2 x)2 cos6 x dx

=

∫
(1− cos2 x)2 cos6 x dx

=

∫
(1− 2 cos2 x + cos4 x) cos6 x dx

=

∫
(cos6 x− 2 cos8 x + cos10 x) dx

=

∫
cos6 x dx− 2

∫
cos8 x dx +

∫
cos10 x dx

Each of these integrals can be evaluated by using the reduction
formula for cosine. First, let us compute

I10 =

∫
cos10 dx

We use the reduction formula for cosine,

(7.18) I10 =
1

10
cos9 x sinx +

9

10
I8

which means we have to find I8 now. By the same reduction
formula,

(7.19) I8 =
1

8
cos7 x sinx +

7

8
I6

which means we have to find I6 now which we have already
calculated earlier in 7.16. Therefore, we have

I8 =
1

8
cos7 x sinx +

7

8
(
1

6
cos5 x sinx +

5

24
cos3 x sinx +

5x

16
+

5 sin 2x

32
) + C

=
1

8
cos7 x sinx +

7

48
cos5 x sinx +

35

192
cos3 x sinx +

35x

128
+

35 sin 2x

256
+ C

Using this in Equation 7.18 we have,

I10 =
1

10
cos9 x sinx+

9

10
(
1

8
cos7 x sinx+

7

48
cos5 x sinx+

35

192
cos3 x sinx+

35x

128
+

35 sin 2x

256
) + C

=
1

10
cos9 x sinx+

9

80
cos7 x sinx+

63

480
cos5 x sinx+

315

1920
cos3 x sinx+
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315x

1280
+

315 sin 2x

2560
+ C

Thus, ∫
sin4 x cos6 x dx = I6 − 2I8 + I10 + C

where,

I6 =
1

6
cos5 x sinx +

5

24
cos3 x sinx +

5x

16
+

5 sin 2x

32

I8 =
1

8
cos7 x sinx +

7

48
cos5 x sinx +

35

192
cos3 x sinx +

35x

128
+

35 sin 2x

256
and

I10 =
1

10
cos9 x sinx+

9

80
cos7 x sinx+

63

480
cos5 x sinx+

315

1920
cos3 x sinx+

315x

1280
+

315 sin 2x

2560

�

7.2.2.3. Powers of Tangent and Secant.

(1) Powers of Tangent - We look at methods for evaluating∫
tann x dx

for a positive integer n.
To evaluate integrals of this form we use the reduction for-

mula for Tangent.

Reduction formula for Tangent: For a positive integer
n, ∫

tann x dx =
tann−1 x

n− 1
−
∫

tann−2 x dx

If we denote

∫
tann x dx by In, then the above formula can

be rewritten as

In =
tann−1 x

n− 1
− In−2

Example 7.20. Evaluate∫
tan5 x dx
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Solution. Here we have to find I5. Using the reduction for-
mula for Tangent we have,

(7.21) I5 =
tan4 x

4
− I3

which means we have to find I3 now. By the same reduction
formula,

(7.22) I3 =
tan2 x

2
− I1

So we have to find I1 now. I1 is the “base case” and it can be
computed by

I1 =

∫
tanx dx =

∫
sinx

cosx
dx

If we use the substitution u = cosx, then du = − sinx dx.
Hence,∫

tanx dx = −
∫

1

u
du

= − ln |u|+ C

= − ln | cosx|+ C = ln | secx|+ C

Using this in 7.22 we have,

I3 =
tan2 x

2
− ln | secx|+ C

Using this in 7.21 we have,

I5 =
tan4 x

4
− (

tan2 x

2
− ln | secx|) + C

=
tan4 x

4
− tan2 x

2
+ ln | secx|+ C

�
If the base case is I2, then we have to evaluate

I2 =

∫
tan2 x dx =

∫
(sec2 x− 1) dx

=

∫
sec2 x dx−

∫
dx

= tanx− x + C

(2) Powers of Secant - We look at methods for evaluating∫
secn x dx
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for a positive integer n.
To evaluate integrals of this form we use the reduction for-

mula for Secant.

Reduction formula for Secant: For a positive integer
n,∫

secn x dx =
secn−2 x tanx

n− 1
+

n− 2

n− 1

∫
secn−2 x dx

If we denote

∫
tann x dx by In, then the above formula can

be rewritten as

In =
secn−2 x tanx

n− 1
+

n− 2

n− 1
In−2

Example 7.23. Evaluate ∫
sec6 x dx

Solution. Here we have to find I6. Using the reduction formula for
Secant we have,

(7.24) I6 =
sec4 x tanx

5
+

4

5
I4

which means we have to find I4 now. By the same reduction formula,

(7.25) I4 =
sec2 x tanx

3
+

2

3
I2

So we have to find I2 now. I2 is the “base case” and it can be computed
by

(7.26) I2 =

∫
sec2 x dx = tanx + C

Using this in 7.25 we have,

I4 =
sec2 x tanx

3
+

2

3
tanx + C

Using this in 7.24 we have,

I6 =
sec4 x tanx

5
+

4

5
(
sec2 x tanx

3
+

2

3
tanx) + C

=
sec4 x tanx

5
+

5 sec2 x tanx

15
+

8

15
tanx + C
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�
If the base case is I1, then we have to evaluate

I1 =

∫
secx dx

We multiply both the numerator and the denominator by secx+tanx.
We then have,∫

secx dx =

∫
secx(secx + tanx)

secx + tanx
dx

=

∫
sec2 x + secx tanx

secx + tanx
dx

We use the substitution u = secx + tanx, then du = secx tanx +
sec2 x dx. Therefore,∫

sec2 x + secx tanx

secx + tanx
dx =

1

u
du

= ln |u|+ C

Substituting u back we have,∫
secx dx = ln | secx + tanx|+ C

7.2.2.4. Products of powers of tangent and secant. Here we look
at methods for evaluating∫

tanm x secn x dx

for positive integers m and n.

(1) m is odd, n anything - In this case we write the integral as∫
tanm x secn x dx =

∫
tanm−1 x secn−1 x(secx tanx) dx

Since m is odd, therefore, m− 1 is even and hence we can use
the identity tan2 x = sec2x− 1 to have,∫

tanm x secn x dx =

∫
(tan2 x)

m−1
2 secn−1 x(secx tanx) dx

=

∫
(sec2 x− 1)

m−1
2 secn−1 x(secx tanx) dx
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We use the substitution u = secx and so du = sec x tanx dx.
Therefore,∫

tanm x secn x dx =

∫
(u2 − 1)

m−1
2 un−1 du

Now the above integral can be technically evaluated by ex-
panding (u2 − 1)

m−1
2 and then multiplying with un and then

using the power rule for each term. Let us look at an example
of this.

Example 7.27. Evaluate∫
tan5 x sec4 x dx

Solution. We rewrite the integral as∫
tan5 x sec4 x dx =

∫
tan4 x sec3 x(secx tanx) dx

We now use the substitution u = secx and so du = secx tanx dx.
We also use the identity tan2 x = sec2 x− 1. Therefore,∫
tan5 x sec4 x dx =

∫
tan4 x sec3 x(secx tanx) dx

=

∫
(sec2 x− 1)2 sec3 x(secx tanx) dx

=

∫
(u2 − 1)2u3 du

=

∫
(u4 − 2u2 + 1)u3 du

=

∫
(u7 − 2u5 + u3) du

=
u8

8
− u6

3
+

u4

4
+ C

Substituting u back gives,∫
tan5 x sec4 x dx =

sec8 x

8
− sec6 x

3
+

sec4 x

4
+ C

�
(2) m is even, n anything - In this case we rewrite the integral

as ∫
tanm x secn x dx =

∫
(tan2 x)

m
2 secn x dx
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Using the identity tan2 x = sec2 x− 1 we have,∫
tanm x secn x dx =

∫
(sec2 x− 1)

m
2 secn x dx

Now the above integral can be evaluated by expanding (sec2 x−
1)

m
2 and then multiplying with secn x and then using the re-

duction formula for secant for each term. Let us look at an
example of this.

Example 7.28. Evaluate∫
tan4 x sec2 x dx

Solution. We rewrite the integral as∫
tan4 x sec2 x dx =

∫
(tan2 x)2 sec3 dx

=

∫
(sec2 x− 1)2 sec2 dx

=

∫
(sec4 x− 2 sec2 x + 1) sec2 dx

=

∫
(sec6 x− 2 sec4 x + sec2 x) dx

=

∫
sec6 x dx− 2

∫
sec4 x dx +

∫
sec2 x dx

Each of these integrals can be evaluated by using the reduction
formula for secant. First, let us compute

I6 =

∫
sec6 dx

We have already computed this in Example 7.23.∫
sec6 x dx =

sec4 x tanx

5
+

5 sec2 x tanx

15
+

8

15
tanx + C

We have also computed I4 =

∫
sec4 x dx and

∫
sec2 x dx in

Example 7.23.∫
sec4 x dx =

sec2 x tanx

3
+

2

3
tanx + C

and ∫
sec2 x dx = tanx + C
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Therefore,∫
tan4 x sec2 x dx = I6 − 2I4 + I2 + C

where,

I6 =
sec4 x tanx

5
+

5 sec2 x tanx

15
+

8

15
tanx

I4 =
sec2 x tanx

3
+

2

3
tanx

I2 = tanx

�



Handout 8
MATH 252

Dibyajyoti Deb

8.1. Trigonometric Substitution

8.1.1. Performance Criteria

(a) Evaluate an integral containing one of the forms a2 − x2, a2 +
x2, x2 − a2 or the square root of any of those forms.

8.1.2. Trigonometric Substitution

In this section we look at methods by which we can evaluate inte-
grals containing certain forms. We will use substitution but involving
trigonometric functions. We will also use the following well known
trigonometric identities. For any angle θ,

sin2 θ + cos2 θ = 1

1 + tan2 θ = sec2 θ

sec2 θ − 1 = tan2 θ

Form 1. Function involving a2− x2. When we have a function that
involves this form then we use the substitution

x = a sin θ

and we continue with the integration. We look at an example
illustrating this substitution.

Example 8.1. Evaluate∫ √
9− x2 dx

Solution. We see that we have the form a2−x2 in the expres-
sion, with a = 3. Hence, we use the substitution,

x = 3 sin θ

1
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Therefore,
dx = 3 cos θ dθ

Substituting back we have,∫ √
9− 9 sin2 θ 3 cos θ dθ =

∫ √
9 cos2 θ 3 cos θ dθ

= 9

∫
cos2 θ dθ

We now use the double angle formula for cos2 θ.

cos2 θ =
1 + cos 2θ

2
The integral then becomes,

9

∫
cos2 θ dθ =

9

2

∫
(1 + cos 2θ) dθ

=
9

2
(

∫
dθ +

∫
cos 2θ dθ)

=
9

2

(
θ +

sin 2θ

2

)
+ C

=
9θ

2
+

9 sin 2θ

4
+ C

Now we have to write this answer in terms of x. Since x =
3 sin θ, therefore, θ = sin−1(x/3). To find sin 2θ in terms of x,
we have to complete the right triangle as below. Since x/3 =
sin θ, therefore the opposite is x and the hypotenuse is 3. The
adjacent is therefore

√
9− x2.

From the picture above,

cos θ =

√
9− x2

3



8.1. Trigonometric Substitution 3

Now

sin 2θ = 2 sin θ cos θ = 2 · x
3
·
√

9− x2
3

=
2x
√

9− x2
9

Therefore,∫ √
9− x2 dx =

9θ

2
+

9 sin 2θ

4
+ C

=
9

2
sin−1(

x

3
) +

9

4
· 2x
√

9− x2
9

+ C

=
9

2
sin−1(

x

3
) +

x
√

9− x2
2

+ C

�
Form 2. Function involving a2 + x2. When we have a function that

involves this form then we use the substitution

x = a tan θ

and we continue with the integration. We look at an example
illustrating this substitution.

Example 8.2. Evaluate∫ 1

0

dx

(4 + 9x2)2

Solution. This is a definite integral. Let us first try to inte-
grate and not worry about the limits until the end. Here it
seems like the expression has the form a2 + x2 in it, however
it’s not so obvious since we have a 9 multiplied with x2. We
first need to get rid of this 9. For this we factor out the 9 from
the expression.

(4 + 9x2)2 =
(

9
(4

9
+ x2

))2
= 92

(4

9
+ x2

)2
Therefore,∫

dx

(4 + 9x2)2
=

∫
dx

92
(4

9
+ x2

)2
Now, this resembles the form a2 + x2 with a = 2/3. We use
the substitution

x =
2

3
tan θ
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Hence

dx =
2

3
sec2 θ dθ

Substituting back we have,

∫
dx

92
(4

9
+ x2

)2 =
1

81

∫ 2
3

tan2 θ dθ

(4
9

+ 4
9

tan2 θ)2

=
2

243

∫
sec2 dθ

16
81

(1 + tan2 θ)2

=
1

24

∫
sec2 θ dθ

sec4 θ

=
1

24

∫
dθ

sec2 θ

=
1

24

∫
cos2 dθ

We now use the double angle formula for cos2 θ.

cos2 θ =
1 + cos 2θ

2

The integral then becomes,

1

24

∫
cos2 θ dθ =

1

48

∫
(1 + cos 2θ) dθ

=
1

48
(

∫
dθ +

∫
cos 2θ dθ)

=
1

48

(
θ +

sin 2θ

2

)
+ C

=
θ

48
+

sin 2θ

96
+ C

Now we have to write this answer in terms of x. Since x =
(2/3) tan θ, therefore, θ = tan−1(3x/2). To find sin 2θ in terms
of x, we have to complete the right triangle as below. Since
3x/2 = tan θ, therefore the opposite is 3x and the adjacent is
2. The hypotenuse is therefore

√
4 + 9x2.
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From the picture above,

cos θ =
2√

4 + 9x2

and

sin θ =
3x√

4 + 9x2

Now

sin 2θ = 2 sin θ cos θ = 2 · 2√
4 + 9x2

· 3x√
4 + 9x2

=
12x

4 + 9x2

Therefore,∫
dx

(4 + 9x2)2
=

θ

48
+

sin 2θ

96
+ C

=
1

48
tan−1(

3x

2
) +

1

96
· 12x

4 + 9x2
+ C

=
1

48
tan−1(

3x

2
) +

x

8(4 + 9x2)
+ C

Going back to the original definite integral we have,∫ 1

0

dx

(4 + 9x2)2
=

[ 1

48
tan−1(

3x

2
) +

x

8(4 + 9x2)

]∣∣∣∣∣
1

0

=
1

48
tan−1

(3

2

)
+

1

104
− (0 + 0)

=
1

48
tan−1

(3

2

)
+

1

104

�
Form 3. Function involving x2 − a2. When we have a function that

involves this form then we use the substitution

x = a sec θ



6 DIBYAJYOTI DEB, HANDOUT 8

and we continue with the integration. We look at an example
illustrating this substitution.

Example 8.3. Evaluate∫
1√

x2 − 9
dx

Solution. We see that we have the form x2−a2 in the expres-
sion, with a = 3. Hence, we use the substitution,

x = 3 sec θ

Therefore,
dx = 3 sec θ tan θ dθ

Substituting back we have,∫
1√

x2 − 9
dx =

∫
3 sec θ tan θ dθ√

9 sec2 θ − 9

=

∫
3 sec θ tan θdθ√

9 tan2 θ

=

∫
3 sec θ tan θdθ

3 tan θ

=

∫
sec θ dθ

This is a standard integral.∫
sec θ dθ = ln | sec θ + tan θ|+ C

Now we have to write this answer in terms of x. Since x =
3 sec θ, therefore, θ = sec−1(x/3). To find tan θ in terms of x,
we have to complete the right triangle as below. Since x/3 =
sec θ, therefore the adjacent is 3 and the hypotenuse is x. The
opposite is therefore

√
x2 − 9.
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From the picture above,

tan θ =

√
x2 − 9

3
Therefore,∫

1√
x2 − 9

dx = ln | sec θ + tan θ|+ C

= ln
∣∣∣x
3

+

√
x2 − 9

3

∣∣∣+ C

= ln
∣∣∣x+

√
x2 − 9

3

∣∣∣+ C

= ln
∣∣∣x+

√
x2 − 9| − ln 3 + C

Since ln 3 is also a constant so − ln 3 + C is also a constant,
hence, ∫

1√
x2 − 9

dx = ln
∣∣∣x+

√
x2 − 9|+ C

�
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8.2. The Method of Partial Fractions

8.2.1. Performance Criteria

(a) Evaluate an integral using partial fractions, for a linear and
quadratic denominator with or without repeated factors.

8.2.2. Partial Fractions

In this section we learn a method by which we can integrate rational
functions of the form

f(x) =
P (x)

Q(x)
When we have a rational function like this, we want to make sure that

degree P (x) < degree Q(x)

If not, then we perform long division to find the quotient Z(x) and
remainder R(x), and then we can write,

f(x) =
P (x)

Q(x)
= Z(x) +

R(x)

Q(x)

Now we work with
R(x)

Q(x)
since

degree R(x) < degree Q(x)

The idea here is to write f(x) as a sum of simpler rational functions
that can be integrated easily.

Strategy. We look at Q(x) and factor it if possible. We look at 2
cases.

Case 1. Q(x) is a product of non repeated factors of the form
ax+ b or ax2 + bx+ c or both - In this case,

P (x)

Q(x)
=

P (x)

(a1x+ b1) · · · (anx+ bn) · · · (A1x2 +B1x+ C1) · · · (A2x2 +B2x+ C2)

We can then use partial fraction decomposition to write

P (x)

Q(x)
=

D1

a1x+ b1
+· · ·+ Dn

anxn + bn
+

E1x+ F1

A1x2 +B1x+ C1

+· · ·+ E2x+ F2

A2x2 +B2x+ C2

Note that the numerator of the fraction with a linear term
(degree=1) in the denominator is a constant (degree=0) and
the numerator of the fraction with a quadratic term (degree=2)
in the denominator is a linear term (degree=1). This is the
strategy in general. If there is a polynomial of degree n in the
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denominator then the corresponding term in the numerator will
be a general polynomial of degree n− 1. We then use algebra
to find the constants D1, . . . , Dn, E1, . . . , En, F1, . . . , Fn.

Example 8.4. Evaluate∫
3

(x− 1)(x2 + x)
dx

Solution. As x2 + x can be factored, therefore we write the
rational function as∫

3

(x− 1)(x2 + x)
dx =

∫
3

(x− 1)x(x+ 1)
dx

We decompose it as

3

(x− 1)x(x+ 1)
=

A

x− 1
+
B

x
+

C

x+ 1

We multiply both sides by (x− 1)x(x+ 1) to get

3 = Ax(x+ 1) +B(x− 1)(x+ 1) + Cx(x− 1)

Substituting x = 0 we have,

3 = A · 0 · 1 +B · (−1) · 1 + C · 0 · (−1)

3 = −B
B = −3

Substituting x = 1 we have,

3 = A · 1 · 2 +B · 0 · 2 + C · 1 · 0
3 = 2A

A =
3

2
Substituting x = −1 we have,

3 = A · (−1) · 0 +B · (−2) · 0 + C · (−1) · (−2)

3 = 2C

C =
3

2
Therefore we rewrite the integral as∫

3

(x− 1)(x2 + x)
dx =

∫
3/2

x− 1
dx+

∫
−3

x
dx+

∫
3/2

x+ 1
dx

=
3

2
ln |x− 1| − 3 ln |x|+ 3

2
ln |x+ 1|+ C

�
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Case 2. Q(x) is a product of repeated factors of the form ax+ b
or ax2 + bx+ c or both - In this case let us look at a rational
function of the form

P (x)

Q(x)
=

P (x)

(a1x+ b1)r(A1x2 +B1x+ C1)s

We can then use partial fraction decomposition to write

P (x)

Q(x)
=

D1

a1x+ b1
+· · ·+ Dr

(a1x+ b1)r
+

E1x+ F1

A1x2 +B1x+ C1

+· · ·+ Esx+ Fs

(A1x2 +B1x+ C1)s

We see here that for every repeated factor in Q(x), we have a
separate rational function following the same technique as Case
1. We then use algebra to find the constantsD1, . . . , Dr, E1, . . . , Es, F1, . . . , Fs.
Let us look at an example.

Example 8.5. Evaluate∫
x2

(x+ 1)(x2 + 1)
dx

Solution. Following the strategy from above, we decompose
the expression as

x2

(x+ 1)(x2 + 1)
=

A

x+ 1
+
Bx+ C

(x2 + 1)

Multiplying both sides by (x+ 1)(x2 + 1) we get,

(8.6) x2 = A(x2 + 1) + (Bx+ C)(x+ 1)

Substituting x = −1 we get,

1 = A · 2 + (−B + C) · 0
1 = 2A

A =
1

2

To find B and C, we foil the right side of Equation 8.6, to get

x2 = Ax2 + A+Bx2 +Bx+ Cx+ C

x2 = (A+B)x2 + (B + C)x+ (A+ C)

Equating coefficients of x2, x and the constant term we have.

A+B = 1⇒ B = 1− A =
1

2

B + C = 0⇒ C = −B = −1

2
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Therefore, we can rewrite the integral as∫
x2

(x+ 1)(x2 + 1)
dx =

∫ 1
2

x+ 1
dx+

1
2
x− 1

2

x2 + 1
dx

=
1

2

∫
dx

x+ 1
+

1

2

∫
x− 1

x2 + 1
dx

=
1

2
ln |x+ 1|+ 1

2

∫
x− 1

x2 + 1
dx

To evaluate
1

2

∫
x− 1

x2 + 1
dx, we do some manipulations,

1

2

∫
x− 1

x2 + 1
dx =

1

4

∫
2x− 2

x2 + 1
dx

=
1

4

∫
2x

x2 + 1
dx− 1

2

∫
1

x2 + 1
dx

=
1

4

∫
2x

x2 + 1
dx− 1

2
tan−1 x

We can use the substitution u = x2 + 1 for the first integral.
Then du = 2x dx, therefore,

1

4

∫
2x

x2 + 1
dx =

1

4

∫
du

u

=
1

4
ln |u|+ C =

1

4
ln |x2 + 1|+ C

Therefore,

1

2

∫
x− 1

x2 + 1
dx =

1

4
ln |x2 + 1| − 1

2
tan−1 x+ C

Hence the original integral becomes,∫
x2

(x+ 1)(x2 + 1)
dx =

1

2
ln |x+ 1|+ 1

2

∫
x− 1

x2 + 1
dx

=
1

2
ln |x+ 1|+ 1

4
ln |x2 + 1| − 1

2
tan−1 x+ C

�
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Dibyajyoti Deb

5.1. Setting up Integral: Volume, Density, Average
Values

5.1.1. Performance Criteria

(a) Use integration to find the volume of solids given the cross
section and the base.

(b) Use integration to find the mass of a solid with variable density.
(c) Compute the average value of an integrable function f(x) on

[a, b].

5.1.2. Setting up integral

In this section we look at various applications of the integral. We start
off by finding the volume of a solid given the base and the cross section.

5.1.2.1. Volume. From previous knowledge we know that the volume
V , of a right circular cylinder is

V = πr2h

where r is the radius of the base and h is the height perpendicular to
the base. Here πr2 is the area of the base (which is a circle of radius
r) or any horizontal cross sections (which are all circles of radius r).

In fact as long as the sides are perpendicular to the base, the volume
of a right cylinder is Ah where A is the area of the base which need not
be circular and h is the height measured perpendicular to the base.

1
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Now, can we extend this method to find volume of solids which are
more general? Yes, we can as long as we find the area of an arbitrary
cross section. Let’s look at this in more detail.

We divide the solid into N thin horizontal slices. Each slice is so
small in width that it resembles a right cylinder in itself.

Each of these horizontal slices have thickness ∆y = (b− a)/N . Let the
area of the ith slice be A(yi) which is at a distance of yi units from the
x-axis. Since each slice resembles a right cylinder, therefore the volume
of the i slice is

Vi = A(yi)∆y

Thus the total volume of all the N slices put together would be

V =
N∑
i=1

Vi ≈
N∑
i=1

A(yi)∆y
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This is an approximation of the volume of the solid. To find the exact
volume we would need to make infinite number of slices which would
mean N →∞. In that case the volume ends up becoming,

V = lim
N→∞

N∑
i=1

A(yi)∆y =

∫ d

c

A(y) dy

by the definition of definite integral. Therefore,

Fact. Let A(y) be the area of a horizontal cross section at a distance y
from the x-axis of a solid body extending from y = c to y = d. Then,

(5.1) Volume of the solid body =

∫ d

c

A(y) dy

Example 5.2. Find the volume of the solid whose base is the region
enclosed by y = x2 and y = 3 and the cross sections perpendicular to
the y-axis are squares.

Solution. Let us first draw the base and the cross section so that we
can better visualize the solid.

The shaded region in red above represents the base of the solid. We
draw a cross section which is a square in blue at a distance of y units
from the x-axis. This cross section touches the curve y = x2 at the
points A(

√
y, y) and B(−√y, y). Hence, the length of the side of the

square is 2
√
y. Therefore,

A(y) = (2
√
y)2 = 4y.
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The limits of the definite integral are from 0 to 3 as those are the
extremities of the base on the y-axis. Hence,

V =

∫ 3

0

A(y) dy

=

∫ 3

0

4y dy

= 2y2

∣∣∣∣∣
3

0

= 18 cubic units.

�
We have seen, what we need to do when we use horizontal cross

sections perpendicular to the y-axis. What if we want to use vertical
cross sections perpendicular to the x-axis. We can use the same tech-
nique as above except that now we have to find the area of an arbitrary
vertical cross section in terms of x. This cross section is at a distance
of x units from the y-axis. Therefore,

Fact. Let A(x) be the area of a vertical cross section at a distance x
from the y-axis of a solid body extending from x = a to x = b. Then,

(5.3) Volume of the solid body =

∫ b

a

A(x) dx

Example 5.4. Find the volume of the solid whose base is the semicircle
y =
√

9− x2, where −3 ≤ x ≤ 3 and the cross sections perpendicular
to the x-axis are squares.

Solution. Let us first draw the base and the cross section so that we
can better visualize the solid.
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The shaded region in red above represents the base of the solid. We
draw a cross section which is a square in blue at a distance of x units
from the y-axis. This cross section touches the semicircle y =

√
9− x2

at the point (x,
√

9− x2). Hence, the length of the side of the square
is
√

9− x2. Therefore,

A(x) = (
√

9− x2)2 = 9− x2.
The limits of the definite integral are from −3 to 3 as those are the
extremities of the base on the x-axis. Hence,

V =

∫ 3

−3
A(x) dx

=

∫ 3

−3
(9− x2) dx

= 9x− x3

3

∣∣∣∣∣
3

−3

= (27− 27

3
)− (−27− (

−27

3
)) = 36 cubic units.

�

5.1.2.2. Density. In this section we find the mass of a rod whose den-
sity is variable. This is called linear mass density ρ and is defined
as the mass per unit length. If ρ is constant, then by definition,

Mass = linear mass density × length = ρ · l
Now if we have a rod extending along the x-axis, and its density at a
point x varies according to the density function ρ(x) then we find the



6 DIBYAJYOTI DEB, HANDOUT 5

mass of the rod by using integration and the same technique that we
used before in computing areas and volume.

We divide the rod into N equal segments. Each segment is so small
such that ρ(x) is a constant along the ith segment.

Each of these segments have thickness ∆x = (b− a)/N . Let the mass
of the ith segment be Mi. Therefore mass of the ith slice is

Mi = ρ(xi)∆x

Thus the total mass of all the N segments put together would be

M =
N∑
i=1

Mi ≈
N∑
i=1

ρ(xi)∆x

This is an approximation of the mass of the rod. To find the exact
mass we would need to make infinite number of segments which would
mean N →∞. In that case the mass ends up becoming,

M = lim
N→∞

N∑
i=1

ρ(xi)∆x =

∫ b

a

ρ(x) dx

by the definition of definite integral. Therefore,

Fact. Let ρ(x) be the density function of a rod along the x-axis ex-
tending from x = a to x = b. Then,

Mass of the rod =

∫ b

a

ρ(x) dx

Example 5.5. Find the total mass of a 1 m rod whose linear density
function is ρ(x) = 10(x+ 1)−2 kg/m for 0 ≤ x ≤ 1.
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Solution. Applying the result that we just derived,

Mass of the rod =

∫ 1

0

10

(x+ 1)2
dx

We use substitution to evaluate the above definite integral.

u = x+ 1

du = dx

Changing the limits,

When x = 0, u = 0 + 1 = 1.

When x = 1, u = 1 + 1 = 2.

Thus,

Mass of the rod =

∫ 2

1

10

u2
du

= −10

u

∣∣∣∣∣
2

1

= (−10

2
)− (−10

1
) = 5 kg.

�

5.1.3. Average Values

Given a set of students and their exam scores, we know how to find
the average score. We can do this because the number of students in
the class is finite number and hence a discreet set. What if we want to
find out the average value of a function f(x) on a continuous interval
[a, b]?

This is not an easy task since there are infinite number of points on
the interval [a, b]. Let’s say we divide the interval [a, b] into N equal
sub intervals at the points x1, x2, . . . , xN . In this case ∆x = (b−a)/N .
Using the right end point approximation

RN = (f(x1) + f(x2) + · · ·+ f(xN))∆x

= (f(x1) + f(x2) + · · ·+ f(xN))
(b− a

N

)
( 1

b− a

)
RN =

f(x1) + f(x2) + · · ·+ f(xN)

N

Therefore,
( 1

b− a

)
RN is the average value of the function f(x) with

points x1, . . . , xN . But what about the remaining infinite points? If we
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take the limit as N →∞ we have,

lim
N→∞

( 1

b− a

)
RN = lim

N→∞

f(x1) + f(x2) + · · ·+ f(xN)

N( 1

b− a

)
lim

N→∞
RN = Average value of f(x) on [a, b]

Now from previous knowledge, the right end point approximation ap-
proaches the definite integral as the number of points approaches in-
finity. Hence,

lim
N→∞

RN =

∫ b

a

f(x) dx

Therefore,

Average value of f(x) on [a, b] =
( 1

b− a

)∫ b

a

f(x) dx

Example 5.6. Calculate the average value of the function f(x) on the
interval [−1, 1].

f(x) = x3

Solution. Here a = −1 and b = 1, therefore using the formula for the
average value from above we have,

Average value of f(x) on [−1, 1] =
( 1

1− (−1)

)∫ 1

−1
x3 dx

=
1

2

(x4
4

)∣∣∣∣∣
1

−1

= 0

�

5.1.3.1. Mean Value Theorem for Integrals. Now we look at an
application of the average value of a function over the continuous in-
terval [a, b]. Going back to the previous example of student scores,
suppose that the class consists of 3 students whose scores are 7, 10,
and 3 out of 10. The average of these scores are 6.67, however, no one
in the class got this as their score. This is because the set of students
is a discrete set as we discussed earlier, however, this is not case when
we look at a function on an interval [a, b].
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Theorem 5.7. Mean Value Theorem for Integrals If f(x) is
continuous of [a, b], then there exists a value c ∈ [a, b] such that

f(c) =
( 1

b− a

)∫ b

a

f(x) dx

Hence, the above theorem says that there will exist a value c on
the interval [a, b] where the value of the function f(x) is equal to the
average value of the function on that interval.

Example 5.8. Let f(x) =
√
x. Find a value of c in [4, 9] such that

f(c) is equal to the average of f on [4, 9].

Solution. Let us first calculate the average value of f(x) on [4, 9].( 1

b− a

)∫ b

a

f(x) dx =
1

5

∫ 9

4

√
x dx

=
1

5

(2x3/2

3

)∣∣∣∣∣
9

4

=
1

5

(2 · 93/2

3
− 2 · 43/2

3

)
=

1

5

(
18− 16

3

)
=

38

15
.

Now we look for c, such that

f(c) =
38

15
√
c =

38

15

c =
(38

15

)2
=

1444

225
= 6.418.

�

5.2. Volumes of Revolution

5.2.1. Performance Criteria

(a) Set up an integral representing the volume of a solid of revo-
lution about a coordinate axis, given the formulas for solids of
revolution.
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5.2.2. Volumes of revolution about the x-axis

A solid of revolution is a solid obtained by rotating a region in the
plane about an axis. We first look at what happens when we rotate
the region along the x-axis.

As we rotate the region under the curve y = f(x), we end up with
a solid whose vertical cross sections perpendicular to the x-axis at a
distance of x units from the y-axis are disks of radius R = f(x). By
(5.3), we have,

V =

∫ b

a

A(x) dx

=

∫ b

a

πR2 dx

= π

∫ b

a

f(x)2 dx

Thus,

Theorem 5.9. Volume of revolution about x-axis: Disk
method If f(x) is continuous and f(x) ≥ 0 on [a, b], then the
solid obtained by rotating the region under the graph about the x-
axis has volume

(5.10) V = π

∫ b

a

f(x)2 dx
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Example 5.11. Find the volume of the solid obtained by rotating the
curve y = x3 on [1, 3] about the x-axis.

Solution. By (5.13), we have

V = π

∫ 3

1

(x3)2

2
dx

=
π

2

∫ 3

1

x6 dx

=
π

2
· x

7

7

∣∣∣∣∣
3

1

=
π

2

(37

7
− 17

7

)
=

2186

14
π.

�

5.2.3. Volumes of revolution about the y-axis

Just as in rotation around the x-axis, we end up with horizontal cross
sections which are disks when we rotate the region to the left of the
curve x = f(y) around the y-axis. If this cross section is at a distance
of y units from the x axis, then the radius of this disk is R = f(y). By
(5.1), we have,

Theorem 5.12. Volume of revolution about y-axis: Disk
method If f(y) is continuous and f(y) ≥ 0 on [c, d], then the
solid obtained by rotating the region left of the graph about the y-
axis has volume

(5.13) V = π

∫ d

c

f(y)2 dy

5.2.4. Volume of revolution about a horizontal line y = c of a
region between two curves

If we have two curves y = f(x) and y = g(x) with f(x) ≥ g(x) on [a, b]
and we rotate the region between these two curves around a horizontal
line y = c, then we obtain a solid which has a “hole” in between. Any
vertical cross sections perpendicular to the x-axis results in a washer
rather than a disk. This washer is made up of two concentric disks
of radius Router and Rinner. These radiuses are calculated from the
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horizontal line y = c. Hence the volume of the solid is,

V =

∫ b

a

A(x) dx

=

∫ b

a

(πR2
outer − πR2

inner) dx

= π

∫ b

a

(R2
outer −R2

inner) dx

Example 5.14. Find the volume of the solid obtained by rotating the
region enclosed by the graphs y = x2, y = 12− x and x = 0 about the
horizontal line y = −2.

Solution. We first draw a picture of the region between the curves.

The point of intersection of the curves y = x2 and y = 12 − x can be
found by

x2 = 12− x
x2 + x− 12 = 0

(x+ 4)(x− 3) = 0

x = −4 and x = 3

Since the region is bounded by x = 0, therefore the point of intersection
is at (3, 9).

When we take a vertical cross section perpendicular to the x-axis,
then

Router = (12− x) + 2 = 14− x
and

Rinner = (x2) + 2
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Thus volume of the solid obtained from rotation about the line y = −2
is,

V = π

∫ 3

0

((14− x)2 − (x2 + 2)2) dx

= π

∫ 3

0

(196− 28x+ x2 − x4 − 4x2 − 4) dx

= π

∫ 3

0

(192− 28x− 3x2 − x4) dx

= π(192x− 14x2 − x3 − x5

5
)

∣∣∣∣∣
3

0

= π(192 · 3− 14 · (3)2 − (3)3 − 35

5
) =

1872π

5

�

5.2.5. Volume of revolution about a vertical line x = c of a
region between two curves

Here again if we have two curves x = f(y) and x = g(y) with f(y) ≥
g(y) on [c, d] and we rotate the region between these two curves around
a vertical line x = e, then we obtain a solid which has a “hole” in
between. Any horizontal cross sections perpendicular to the y-axis
results in a washer rather than a disk. This washer is made up of
two concentric disks of radius Router and Rinner. These radiuses are
calculated from the vertical line x = e. Hence the volume of the solid
is,

V =

∫ d

c

A(y) dy

=

∫ d

c

π(R2
outer − πR2

inner) dy

= π

∫ d

c

(R2
outer −R2

inner) dy

Example 5.15. Find the volume of the solid obtained by rotating the
region enclosed by the graphs y = 2

√
x and y = x about the vertical

line x = −2.

Solution. We first draw a picture of the region between the curves.



14 DIBYAJYOTI DEB, HANDOUT 5

We find the points of intersection of the curves y = 2
√
x and y = x by,

2
√
x = x

4x = x2

x(x− 4) = 0

x = 4 and x = 0

Thus, the points of intersection are (4, 4) and (0, 0). We now write the
equations of the curves as functions of y. Since y = 2

√
x, therefore

x =
y2

4
for y ≥ 0 and y = x implies that x = y.

When we take a horizontal cross section perpendicular to the y-axis,
then

Router = (y) + 2

and

Rinner = (
y2

4
) + 2
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Thus the volume of the solid obtained from rotation about the line
x = −2 is,

V = π

∫ 4

0

((y + 2)2 − (
y2

4
+ 2)2) dy

= π

∫ 4

0

(y2 + 4y + 4− y4

16
− y2 − 4) dy

= π

∫ 4

0

(4y − y4

16
) dy

= π(2y2 − y5

80
)

∣∣∣∣∣
4

0

=
96π

5

�
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6.1. The Method of Cylindrical Shells

6.1.1. Performance Criteria

(a) Set up an integral using the method of cylindrical shells to
represent the volume of a solid of revolution about a coordinate
axis.

6.1.2. The Shell Method

In this section we learn a different method by which we can compute
the volume of a solid of revolution. This method is based on cylindrical
shells and is more convenient in some cases. We first look at a thin
cylindrical shell of height h and approximate its volume.

1
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If the radius of the outer cylinder is R and the radius of the inner cylin-
der is r, then the volume of the region in between these two cylinders
is given by

πR2h− πr2h = πh(R2 − r2) = πh(R + r)(R− r)

Now since the shell is very thin therefore r ≈ R, so that we can consider
the radius of the shell itself to be R, and hence R + r ≈ 2R and the
thickness of the shell is given by R− r = ∆r. Thus,

Volume of the shell ≈ 2πRh∆r = 2π(radius)(height of the shell)(thickness)

Now if we take the region under the curve y = f(x) on [a, b] and rotate
it about the y-axis, then we end up with a solid that can be divided
into thin concentric shells. Each of these shells are formed from a thin
strip on the x-axis of width ∆x as shown in the figure below.

If the volume of the thin shell that is formed by rotating the strip on
[xi−1, xi] is Vi, then the radius of the shell is xi and the height is f(xi).
Therefore,

Vi ≈ 2π(radius)× (height of the shell)× (thickness) = 2πxif(xi)∆x

Since the region under y = f(x) is made up N such strips therefore,
the approximate volume of the shell is

V =
N∑
i=1

Vi = 2π
N∑
i=1

xif(xi)∆x

We find the exact volume if we take thinner and more number of
strips i.e. N → ∞. In that case the sum on the right converges to

2π

∫ b

a

xf(x) dx. Thus,
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Theorem 6.1. Volume of Revolution: The Shell Method
The solid obtained by rotating the region under y = f(x) over the
interval [a, b] about the y-axis has volume

V = 2π

∫ b

a

xf(x) dx = 2π

∫ b

a

(radius)(height of the shell) dx

Now let us look at an example which uses the same theory from
above but where the region is rotated about a vertical axis other than
the y-axis.

Example 6.2. Find the volume of the solid obtained by rotating the
region underneath the graph of y = x3 on [0, 1] about the line x = 2.

Solution. Let us first sketch the graph and the region underneath it.

The radius of the cylindrical shell is the distance of the shell from the
axis of rotation. At any point (x, f(x)) on the curve the cylindrical
shell will have radius 2− x (the distance of the point from x = 2) and
height f(x) = x3. Thus using Theorem 6.1, we have

V = 2π

∫ 1

0

(2− x)x3 dx

= 2π

∫ 1

0

(2x3 − x4) dx

= 2π
(x4

2
− x5

5

)∣∣∣∣∣
1

0

=
3π

5

�
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6.1.2.1. Shell Method : Volume of revolution about a vertical
axis of a region between two curves. What happens when we
rotate the region between two curves around a vertical axis? The theory
still remains the same! We still have to find the radius of a cylindrical
shell and its height.

Looking at the picture above we see that the height of the shell between
the curves y = f(x) and y = g(x) is f(x)− g(x) and the radius of the
shell is still x (its distance from the axis of rotation which in this case
is the y-axis). Thus, the volume of the solid of revolution from this
region is given by,

V = 2π

∫ b

a

(radius)(height of the shell) dx = 2π

∫ b

a

x(f(x)−g(x)) dx

Example 6.3. Use the Shell Method to find the volume obtained by
rotating the region between the curves y = x2 + 2, y = 6 and x ≥ 0
about the vertical axis x = −3.

Solution. As always we first sketch the graphs and the region in be-
tween.
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The points of intersection of the two curves are,

x2 + 2 = 6

x2 = 4

x = 2 and x = −2

The radius of the cylindrical shell is the distance of the shell from the
axis of rotation. We draw a vertical line joining the two curves at a
distance of x units from the y-axis. The cylindrical shell obtained by
rotating this straight line about x = −3 has radius x+ 3 (the distance
of the this line from x = −3) and the height is length of this line which
is 6− (x2 + 2) = 4− x2. Thus using the above result, we have

V = 2π

∫ 2

0

(x+ 3)(4− x2) dx

= 2π

∫ 2

0

(−x3 − 3x2 + 4x+ 12) dx

= 2π
(
− x4

4
− x3 + 2x2 + 12x

)∣∣∣∣∣
2

0

= 40π.

�

6.1.2.2. Shell Method : Volume of revolution about a horizon-
tal axis of a region between two curves. When we rotate the
region between two curves about a horizontal axis, the theory of cylin-
drical shells still remains the same. We still find the radius of the shell



6 DIBYAJYOTI DEB, HANDOUT 6

by finding the distance of the horizontal line joining the two curves
from the axis of rotation. The height of the shell is similarly found
by finding the length of this horizontal line. The only difference we
have in this case is the change of variables from x to y. We integrate
with respect to y, hence the equations of our original curves have to be
functions of y (which is usually how it’s given).

Therefore, if the region between the curves x = f(y) and x = g(y)
with f(y) ≥ g(y) on [c, d] is rotated about the x-axis, then the volume
of rotation of the solid is

V = 2π

∫ d

c

(radius)(height of the shell) dy = 2π

∫ d

c

y(f(y)−g(y)) dy

Example 6.4. Use the Shell Method to find the volume obtained by
rotating the region between the curves x = (y − 2)2, and y = x about
the horizontal axis y = −1.

Solution. As always we first sketch the graphs and the region in be-
tween.

The points of intersection of the two curves are,

(y − 2)2 = y

y2 − 4y + 4 = y

y2 − 5y + 4 = 0

(y − 4)(y − 1) = 0

y = 1 and y = 4
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The radius of the cylindrical shell is the distance of the shell from the
axis of rotation. We draw a horizontal line joining the two curves at a
distance of y units from the x-axis. The cylindrical shell obtained by
rotating this straight line about y = −1 has radius y + 1 (the distance
of the this line from y = −1) and the height is length of this line which
is y − (y − 2)2 = −y2 + 5y − 4. Thus using the above result, we have

V = 2π

∫ 4

1

(y + 1)(−y2 + 5y − 4) dy

= 2π

∫ 4

1

(−y3 + 4y2 + y − 4) dy

= 2π
(
− y4

4
+

4y3

3
+
y2

2
− 4y

)∣∣∣∣∣
4

1

=
63π

2

�
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6.2. Work and Energy

(a) Set up an integral representing an amount of work or a hydro-
static pressure.

6.2.1. Work and Energy

The amount of work W done in moving an object with a constant force
F Newtons through distance of d meters in the direction of the force
is given by

W = F · d

Now what happens if the force varies as the object moves from a
to b along the x-axis. If we denote this force by F (x) then as we have
done countless times before, we can divide the region between a and
b into N equal segments. Each segment is of length ∆x and the force
needed to move the object on the interval [xi−1, xi] can be considered
constant and equal to F (xi) as the interval is very small. Then, the
work Wi that is done in moving the object from xi−1 to xi is

Wi = F (xi)∆x

Hence, the total work done is

W =
N∑
i=1

Wi ≈
N∑
i=1

F (xi)∆x

To find the exact work we take N → ∞. In this case the sum on the

right converges to

∫ b

a

F (x) dx.

Definition 6.5. Work The work performed in moving an object
along the x-axis from a to b by applying a force of magnitude F (x)
is

W =

∫ b

a

F (x) dx

We will be mostly concerned with the work done in stretching and
compressing a spring. By Hooke’s Law, when a spring is stretched or
compressed to position x, it exerts a restoring force of magnitude kx in
the opposite direction. The constant k is called the spring constant.
We can use this fact to find the work required to stretch or compress
a spring beyond its equilibrium points.
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Example 6.6. If 5 J of work is needed to stretch a spring 10 cm beyond
equilibrium, how much work is required to stretch it 15 cm beyond the
equilibrium point.

Solution. We first find the spring constant k. We also have to make
sure that the units of length are in meters. Since,

5 =

∫ 0.1

0

kx dx =
[1

2
kx2
]0.1
0

= .005k

Therefore, k =
5

0.005
N/m = 1000 N/m. Since 15 cm = 0.15 m,

therefore the work required to stretch it is

W =

∫ 0.15

0

kx dx =

∫ 0.15

0

1000x dx =
[
500x2

]0.15
0

= 500·0.0225 = 11.25 J

�


